265
Views
30
CrossRef citations to date
0
Altmetric
Original

Impact of ROS on ageing of two fungal model systems: Saccharomyces cerevisiae and Podospora anserina

&
Pages 1350-1358 | Received 13 Jun 2006, Published online: 07 Jul 2009

References

  • Agarwal S, Sohal RS. DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci USA 1994; 91: 12332–12335
  • Aguilaniu H, Gustafsson L, Rigoulet M, Nyström T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 2003; 299: 1751–1753
  • Albert B, Sellem CH. Dynamics of the mitochondrial genome during Podospora anserina aging. Curr Genet 2002; 40: 365–373
  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 2003; 423: 181–185
  • Anderson RM, Latorre-Esteves M, Neves AR, Lavu S, Medvedik O, Taylor C, Howitz KT, Santos H, Sinclair DA. Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science 2003; 302: 2124–2126
  • Azam M, Lee JY, Abraham V, Chanoux R, Schoenly KA, Johnson FB. Evidence that the S. cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence. Nucleic Acids Res 2006; 34: 506–516
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120: 483–495
  • Barja G, Herrero A. Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 1998; 30: 235–243
  • Belcour L, Begel O, Mosse MO, Vierny-Jamet C. Mitochondrial DNA amplification in senescent cultures of Podospora anserina: Variability between the retained, amplified sequences. Curr Genet 1981; 3: 13–21
  • Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002; 277: 45099–45107
  • Bjergbaek L, Cobb JA, Tsai-Pflugfelder M, Gasser SM. Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J 2005; 24: 405–417
  • Borghouts C, Benguria A, Wawryn J, Jazwinski SM. Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 2004; 166: 765–777
  • Borghouts C, Kimpel E, Osiewacz HD. Mitochondrial DNA rearrangements of Podospora anserina are under the control of the nuclear gene grisea. Proc Natl Acad Sci USA 1997; 94: 10768–10773
  • Borghouts C, Osiewacz HD. GRISEA, a copper-modulated transcription factor from Podospora anserina involved in senescence and morphogenesis, is an ortholog of MAC1 in Saccharomyces cerevisiae. Mol Gen Genet 1998; 260: 492–502
  • Borghouts C, Scheckhuber CQ, Stephan O, Osiewacz HD. Copper homeostasis and aging in the fungal model system Podospora anserina: Differential expression of PaCtr3 encoding a copper transporter. Int J Biochem Cell Biol 2002; 34: 1355–1371
  • Borghouts C, Scheckhuber CQ, Werner A, Osiewacz HD. Respiration, copper availability and SOD activity in P. anserina strains with different lifespan. Biogerontology 2002; 3: 143–153
  • Borghouts C, Werner A, Elthon T, Osiewacz HD. Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserina. Mol Cell Biol 2001; 21: 390–399
  • Butow RA, Avadhani NG. Mitochondrial signaling: The retrograde response. Mol Cell 2004; 14: 1–15
  • Clarkson AB, Jr, Bienen EJ, Pollakis G, Grady RW. Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J Biol Chem 1989; 264: 17770–17776
  • Conrad-Webb H, Butow RA. A polymerase switch in the synthesis of rRNA in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15: 2420–2428
  • Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC. Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age. Nat Genet 1992; 2: 324–329
  • Cortopassi GA, Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 1990; 18: 6927–6933
  • Cummings DJ, Belcour L, Grandchamp C. Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 1979; 171: 239–250
  • Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004; 116: 205–219
  • Delay C. Observations inframicroscopiques sur le mycelium ‘senescent’ du Podospora anserina. C R Acad Sci Paris 1963; 256: 4721–4724
  • Doudican NA, Song B, Shadel GS, Doetsch PW. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25: 5196–5204
  • Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A. A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci USA 2000; 97: 4138–4143
  • Epstein CB, Waddle JA, Hale W, Dave V, Thornton J, Macatee TL, Garner HR, Butow RA. Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 2001; 12: 297–308
  • Esser K, Tudzynski P. Senescence in fungi. Senescence in plants, KV Thimann. CRC Press, Boca Raton 1980; 67–83
  • Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD. Sir2 blocks extreme life-span extension. Cell 2005; 123: 655–667
  • Falcon AA, Aris JP. Plasmid accumulation reduces life span in Saccharomyces cerevisiae. J Biol Chem 2003; 278: 41607–41617
  • Fang J, Beattie DS. Alternative oxidase present in procyclic Trypanosoma brucei brucei may act to lower the mitochondrial production of superoxide. Arch Biochem Biophys 2003; 414: 294–302
  • Friedrich T, Steinmüller K, Weiss H. The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEBS Lett 1995; 367: 107–111
  • Goto M. Hierarchical deterioration of body systems in Werner's syndrome: Implications for normal ageing. Mech Ageing Dev 1997; 98: 239–254
  • Gotta M, Strahl-Bolsinger S, Renauld H, Laroche T, Kennedy BK, Grunstein M, Gasser SM. Localization of Sir2p: The nucleolus as a compartment for silent information regulators. EMBO J 1997; 16: 3243–3255
  • Gredilla R, Grief J, Osiewacz HD. Mitochondrial free radical generation and lifespan control in the fungal aging model Podospora anserina. Exp Gerontol 2006; 41: 439–447
  • Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 2000; 14: 1021–1026
  • Harman D. A theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298–300
  • Harman D. The biologic clock: The mitochondria?. J Am Geriatr Soc 1972; 20: 145–147
  • Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissing S, Büttner S, Fehr M, Sigrist S, Madeo F. Chronological aging leads to apoptosis in yeast. J Cell Biol 2004; 164: 501–507
  • Huq S, Palmer JM. Isolation of a cyanide-resistant duroquinol oxidase from Arum maculatum mitochondria. FEBS Lett 1978; 95: 217–220
  • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403: 795–800
  • Jamet-Vierny C, Boulay J, Begel O, Silar P. Contribution of various classes of defective mitochondrial DNA molecules to senescence in Podospora anserina. Curr Genet 1997; 31: 171–178
  • Jamet-Vierny C, Boulay J, Briand JF. Intramolecular cross-overs generate deleted mitochondrial DNA molecules in Podospora anserina. Curr Genet 1997; 31: 162–170
  • Jamet-Vierny C, Contamine V, Boulay J, Zickler D, Picard M. Mutations in genes encoding the mitochondrial outer membrane proteins Tom70 and Mdm10 of Podospora anserina modify the spectrum of mitochondrial DNA rearrangements associated with cellular death. Mol Cell Biol 1997; 17: 6359–6366
  • Jarmuszkiewicz W, Wagner AM, Wagner MJ, Hryniewiecka L. Immunological identification of the alternative oxidase of Acanthamoeba castellanii mitochondria. FEBS Lett 1997; 411: 110–114
  • Jazwinski SM, Egilmez NK, Chen JB. Replication control and cellular life span. Exp Gerontol 1989; 24: 423–436
  • Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N, Fields S, Kennedy BK. Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 2005; 1: e69
  • Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13: 2570–2580
  • Katayama M, Tanaka M, Yamamoto H, Ohbayashi T, Nimura Y, Ozawa T. Deleted mitochondrial DNA in the skeletal muscle of aged individuals. Biochem Int 1991; 25: 47–56
  • Kennedy BK, Austriaco NR, Jr, Zhang J, Guarente LP. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 1995; 80: 485–496
  • Kim S, Ohkuni K, Couplan E, Jazwinski SM. The histone acetyltransferase GCN5 modulates the retrograde response and genome stability determining yeast longevity. Biogerontology 2004; 5: 305–316
  • Kirchman PA, Kim S, Lai CY, Jazwinski SM. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 1999; 152: 179–190
  • Kirkwood TB. Molecular gerontology. J Inherit Metab Dis 2002; 25: 189–196
  • Kirkwood TB, Austad SN. Why do we age?. Nature 2000; 408: 233–238
  • Kobayashi T, Heck DJ, Nomura M, Horiuchi T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: Requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 1998; 12: 3821–3830
  • Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD. Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina. J Biol Chem 2004; 279: 26453–26461
  • Kück U, Kappelhoff B, Esser K. Despite mtDNA polymorphism the mobile intron (plDNA) of the COI gene is present in ten different races of Podospora anserina. Curr Genet 1985; 10: 59–67
  • Kück U, Stahl U, Esser K. Plasmid-like DNA is part of mitochondrial DNA in Podospora anserina. Curr Genet 1981; 3: 151–156
  • Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K. The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet 1985; 9: 373–382
  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005; 309: 481–484
  • Lai CY, Jaruga E, Borghouts C, Jazwinski SM. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 2002; 162: 73–87
  • Lambowitz AM, Sabourin JR, Bertrand H, Nickels R, McIntosh L. Immunological identification of the alternative oxidase of Neurospora crassa mitochondria. Mol Cell Biol 1989; 9: 1362–1364
  • Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C, Lin SJ, Sinclair DA. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 2005; 309: 1861–1864
  • Landry J, Slama JT, Sternglanz R. Role of NAD+ in the deacetylase activity of the SIR2-like proteins. Biochem Biophys Res Commun 2000; 278: 685–690
  • Larsen PL. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 1993; 90: 8905–8909
  • Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Fröhlich KU, Breitenbach M. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 2001; 39: 1166–1173
  • Liao X, Butow RA. RTG1 and RTG2: Two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 1993; 72: 61–71
  • Liao XS, Small WC, Srere PA, Butow RA. Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol Cell Biol 1991; 11: 38–46
  • Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289: 2126–2128
  • Lin SJ, Ford E, Haigis M, Liszt G, Guarente L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 2004; 18: 12–16
  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002; 418: 344–348
  • Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1989; 1: 642–645
  • Longo VD, Butler Gralla E, Selverstone Valentine J. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. J Biol Chem 1996; 271: 12275–12280
  • Longo VD, Liou LL, Valentine JS, Gralla EB. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 1999; 365: 131–142
  • Lorin S, Dufour E, Boulay J, Begel O, Marsy S, Sainsard-Chanet A. Overexpression of the alternative oxidase restores senescence and fertility in a long-lived respiration-deficient mutant of Podospora anserina. Mol Microbiol 2001; 42: 1259–1267
  • Madeo F, Fröhlich E, Fröhlich KU. A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 1997; 139: 729–734
  • Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU. Oxygen stress: A regulator of apoptosis in yeast. J Cell Biol 1999; 145: 757–767
  • Maxwell DP, Wang Y, McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 1999; 96: 8271–8276
  • Minagawa N, Yoshimoto A. The induction of cyanide-resistant respiration in Hansenula anomala. J Biochem (Tokyo) 1987; 101: 1141–1146
  • Minois N. How should we assess the impact of genetic changes on ageing in model species?. Ageing Res Rev 2006; 5: 52–59
  • Moore AL, Umbach AL, Siedow JN. Structure-function relationships of the alternative oxidase of plant mitochondria: A model of the active site. J Bioenerg Biomembr 1995; 27: 367–377
  • Mortimer RK, Johnston JR. Life span of individual yeast cells. Nature 1959; 183: 1752
  • Moye-Rowley WS, Harshman KD, Parker CS. Yeast YAP1 encodes a novel form of the jun family of transcriptional activator proteins. Genes Dev 1989; 3: 283–292
  • Osiewacz HD, Esser K. The mitochondrial plasmid of Podospora anserina: A mobile intron of a mitochondrial gene. Curr Genet 1984; 8: 299–305
  • Osiewacz HD, Nuber U. GRISEA, a putative copper-activated transcription factor from Podospora anserina involved in differentiation and senescence. Mol Gen Genet 1996; 252: 115–124
  • Pohley HJ. A formal mortality analysis for populations of unicellular organisms (Saccharomyces cerevisiae). Mech Ageing Dev 1987; 38: 231–243
  • Pray-Grant MG, Schieltz D, McMahon SJ, Wood JM, Kennedy EL, Cook RG, Workman JL, Yates JR, III, Grant PA. The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 2002; 22: 8774–8786
  • Prillinger H, Esser K. The phenoloxidases of the ascomycete Podospora anserina. XIII. Action and interaction of genes controlling the formation of laccase. Mol Gen Genet 1977; 156: 333–345
  • Rizet G. Sur l'impossibilité d'obtenir la multiplication végétative iniéterrompuent illimitée de l'ascomycète Podospora anserina. C R Acad Sci Paris 1953; 237: 838–855
  • Sainsard-Chanet A, Begel O. Insertion of an LrDNA gene fragment and of filler DNA at a mitochondrial exon-intron junction in Podospora. Nucleic Acids Res 1990; 18: 779–783
  • Sekito T, Thornton J, Butow RA. Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell 2000; 11: 2103–2115
  • Silar P, Koll F, Rossignol M. Cytosolic ribosomal mutations that abolish accumulation of circular intron in the mitochondria without preventing senescence of Podospora anserina. Genetics 1997; 145: 697–705
  • Sinclair DA, Guarente LP. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 1997; 91: 1033–1042
  • Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, Boeke JD. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 2000; 97: 6658–6663
  • Sohal RS, Agarwal A, Agarwal S, Orr WC. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem 1995; 270: 15671–15674
  • Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996; 273: 59–63
  • Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K. Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 1978; 162: 341–343
  • Stumpferl SW, Stephan O, Osiewacz HD. Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span. Eukaryot Cell 2004; 3: 200–211
  • Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC. A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 2001; 276: 38084–38089
  • Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 2000; 97: 14178–14182
  • Tanny JC, Moazed D. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product. Proc Natl Acad Sci USA 2001; 98: 415–420
  • Wallace DC. Mitochondrial defects in neurodegenerative disease. Ment Retard Dev Disabil Res Rev 2001; 7: 158–166
  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD. Positional cloning of the Werner's syndrome gene. Science 1996; 272: 258–262

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.