391
Views
101
CrossRef citations to date
0
Altmetric
Original

Clinical oxidation parameters of aging

&
Pages 1339-1349 | Received 10 Aug 2006, Published online: 07 Jul 2009

References

  • Özben T. Oxidative stress and antioxidants in aging. Frontiers in neurodegenerative disorder and aging: fundamental aspects, clinical perspectives and new insights, T Özben, M Chevion. IOS press, Amsterdam 2004; 99–115
  • Troen BR. The biology of aging. Mt Sinai J Med 2003; 70: 3–22
  • Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298–300
  • de Souza-Pinto NC, Bohr VA. The mitochondrial theory of aging: Involvement of mitochondrial DNA damage and repair. Int Rev Neurobiol 2002; 53: 519–534
  • Junqueira VB, Barros SB, Chan SS, Rodriguez L, Giavarotti L, Abud RL, Deucher GP. Aging and oxidative stress. Mol Aspects Med 2004; 25: 5–16
  • Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78: 547–581
  • Hughes KA, Reynolds RM. Evolutionary and mechanistic theories of aging. Ann Rev Entomol 2005; 50: 421–425
  • Lenaz G. The mitochondrial production of reactive oxygen species: Mechanism and implications in human pathology. IUBMB Life 2001; 52: 159–164
  • Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ. Aging, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand 2004; 182: 321–331
  • Irshad M, Chaudhuri PS. Oxidant–antioxidant system: Role and significance in human body. Indian J Exp Biol 2002; 40: 1233–1239
  • Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta 2001; 305: 75–80
  • Bonnefont-Rousselot D, Therond P, Beaudeux JL, Peynet J, Legrand A, Delattre J. Aging and oxidative stress. Which potential markers?. Ann Biol Clin 2001; 59: 453–459
  • Stadtman ER. Importance of individuality in oxidative stress and aging. Free Radic Biol Med 2002; 33: 597–604
  • Jones DP, Mody VC, Carlson JL, Lynn MJ, Sternberg P. Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med 2002; 33: 1290–1300
  • Ward WF, Qi W, van Remmen H, Zackert WE, Roberts JL, 2nd, Richardson A. Effects of age and caloric restriction on lipid peroxidation: Measurement of oxidative stress by F2-isoprostane levels. J Gerontol A biol Sci Med Sci 2005; 60: 845–847
  • Ingram DK, Nakamura E, Smucny D, Roth GS, Lane MA. Strategy for identifying biomarkers of aging in long-lived species. Exp Gerontol 2001; 36: 1025–1034
  • Perez DD, Strobel P, Foncea R, Diez MS, Vasquez L, Urquiaga I, Castillo O, Cuevas A, San Martin A, Leighton F. Wine, diet, antioxidant defenses and oxidative damage. Ann NY Acad Sci 2002; 957: 136–145
  • Lau FC, Shukitt-Hale B, Joseph JA. The beneficial effects of fruit polyphenols on brain aging. Neurobiol Aging 2005; 26(Suppl. 1)128–132
  • Schmitt-Schilling S, Schaffer S, Weber CC, Eckert GP, Muller WE. Flavonoids and the aging brain. J Physiol Pharmacol 2005; 56(Suppl. 1)23–36
  • Joseph JA, Shukitt-Hale B, Casadesus G. Reversing the deleterious effects of aging on neuronal communication and behavior: Beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr 2005; 81(Suppl. 1)313S–316S
  • Erden-Inal M, Sunal E, Kanbak G. Age-related changes in the glutathione redox system. Cell Biochem Funct 2002; 20: 61–66
  • Dani C, Cecchi A, Bertini G. Role of oxidative stress as physiopathologic factor in the preterm infant. Minerva Pediatr 2004; 56: 382–394
  • Schmidt H, Grune T, Mueller R, Siems WG, Wauer RR. Increased levels of lipid peroxidation products malondialdehyde and 4-hydroxynonenal after perinatal hypoxia. Pediatr Res 1996; 40: 15–20
  • Gil L, Siems W, Mazurek B, Gross J, Schroeder P, Voss P, Grune T. Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic Res 2006; 40: 495–505
  • Rondanelli M, Melzi d'Eril GV, Anesi A, Ferarri E. Altered oxidative stress in healthy old subjects. Aging (Milano) 1997; 9: 221–223
  • Martin-Ruiz CM, Gussekloo J, van Heemst D, von Zglinicki T, Westendorp RG. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: A population based study. Aging Cell 2005; 4: 287–290
  • Mecocci P, Polidori MC, Troiano L, Cherubini A, Cecchetti R, Pini G, Straatman M, Monti D, Stahl W, Sies H, Franceschi C, Senin U. Plasma antioxidants and longevity: A study on healthy centenarians. Free Radic Biol Med 2000; 28: 1243–1248
  • Collins AR, Cadet J, Moller L, Poulsen HE, Vina J. Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells?. Arch Biochem Biophys 2004; 423: 57–65
  • European Standards Committee on Oxidative DNA Damage (ESCODD). Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Biol Med 2003; 34: 1089–1099
  • European Standards Committee on Oxidative DNA Damage (ESCODD). Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: An approach to consensus. Carcinogenesis 2002; 23: 2129–2133
  • European Standards Committee on Oxidative DNA Damage (ESCODD). Comparison of different methods of measuring 8-oxoguanine as a marker of oxidative DNA damage. Free Radic Res 2000; 32: 333–341
  • Collins AR. Assays for oxidative stress and antioxidant status: Applications to research into the biological effectiveness of polyphenols. Am J Clin Nutr 2005; 81(Suppl. 1)261S–267S
  • Nekhaeve E, Bodyak ND, Kraytsberg Y, McGrath SB, Van Orsouw NJ, Pluzhnikov A, Wei JY, Vijg J, Khrapko K. Clonally expanded mtDNA mutations are abundant in individual cells of human tissues. Proc Natl Acad Sci USA 2002; 99: 5521–5526
  • Siems W, Grune T. Lipid peroxidation measurements—methodological approaches and clinical importance. Free radicals and diseases: gene expression, cellular metabolism and pathophysiology, T Grune. IOS Press NATO Science Series, Amsterdam, Berlin, Oxford, Tokyo, Washington, DC 2005; 367: 11–21, Series I: Life and Behavioural Sciences.
  • Roberts LJ, 2nd, Moore KP, Zackert WE, Oates JA, Morrow JD. Identification of the major urinary metabolite of the F2-isoprostane 8-iso-prostaglandin F2alpha in humans. J Biol Chem 1996; 271: 20617–20620
  • Basu S. Isoprostanes: Novel bioactive products of lipid peroxidation. Free Radic Res 2004; 38: 105–122
  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ, 2nd. A series of prostaglandine F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalysed mechanism. Proc Natl Acad Sci USA 1990; 98: 9383–9387
  • Cracowski JL, Stanke-Labesque F, Souvignet C, Bessard G. Isoprostanes: New markers of oxidative stress in human diseases. Presse Med 2000; 29: 604–610
  • Salahudeen AK, Reckelhoff JF, Morrow JD, Roberts LJ, 2nd. F2-isoprostanes and the kidney. Drug News Perspect 1998; 11: 287–290
  • Roberts LJ, 2nd, Reckelhoff JF. Measurement of F(2)-isoprostanes unveils profound oxidative stress in aged rats. Biochem Biophys Res Commun 2001; 287: 254–256
  • Sacheck JM, Milbury PE, Cannon JG, Roubenoff R, Blumberg JB. Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic Biol Med 2003; 34: 1575–1588
  • Wong SH, Knight JA, Hopfer SM, Zaharia O, Leach CN, Jr, Sunderman FW, Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malonaldehyde–thiobarbituric acid adduct. Clin Chem 1987; 33: 210–220
  • Traverso N, Patriarca S, Balbis E, Furfaro AL, Cottalasso D, Pronzato MA, Carlier P, Botta F, Marinari UM, Fontana L. Anti malondialdehyde-adduct immunological response as a possible marker of successful aging. Exp Gerontol 2003; 38: 1129–1135
  • Mutlu-Turkoglu U, Ilhan E, Oztezcan S, Kuru A, Aykac-Toker G, Uysal M. Age-related increase in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects. Clin Biochem 2003; 36: 397–400
  • Kasapogul M, Ozben T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol 2001; 36: 209–220
  • Ozbay B, Dulger H. Lipid peroxidation and antioxidant enzymes in Turkish population: Relation to age, gender, exercise, and smoking. Tohoku J Exp Med 2002; 197: 124
  • Hernanz A, Fernandez-Vivancos E, Montiel C, Vazquez JJ, Arnalich F. Changes in the intracellular homocysteine and glutathione content associated with aging. Life Sci 2000; 67: 1317–1324
  • Di Massimo C, Scarpelli P, Di Lorenzo N, Caimi G, di Orio F, Ciancarelli MG. Impaired plasma nitric acid availability and extracellular superoxide dismutase activity in healthy humans with advanced age. Life Sci 2006; 47: 1163–1167
  • Kasapoglu M, Ozben T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol 2001; 36: 209–220
  • Strohmaier H, Hinghofer-Szalkay H, Schaur RJ. Detection of 4-hydroxynonenal (HNE) as a physiological component in human plasma. J Lipid Mediat Cell Signal 1995; 11: 51–61
  • Esterbauer H, Cheeseman KH, Dianzani MU, Poli G, Slater TF. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP–Fe2+ in rat liver microsomes. J Biochem 1982; 208: 129–140
  • Grune T, Siems WG, Zollner H, Esterbauer H. Metabolism of 4-hydroxynonenal, a cytotoxic lipid peroxidation product, in Ehrlich mouse ascites cells at different proliferation stages. Cancer Res 1994; 54: 5231–5235
  • Diamond J, Skaggs J, Manaligod JM. Free-radical damage: A possible mechanism of laryngeal aging. Ear Nose Throat J 2002; 81: 531–533
  • Requena JR, Levine RL, Stadtman ER. Recent advances in the analysis of oxidized proteins. Amino acids 2003; 25: 221–226
  • Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino acids 2003; 25: 207–218
  • Tom A, Nair KS. Assessment of branched-chain amino acid status and potential for biomarkers. J Nutr 2006; 136: 324S–330S
  • Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med 2002; 32: 797–803
  • Voss P, Grune T. Degradation and accumulation of oxidized proteins in age-related diseases. Redox proteomics: from protein modification to cellular dysfunction and diseases, I Dalle-Donne, A Scalini, A Butterfield. John Wiley & Sons Inc., New York 2006
  • Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals and brain aging. Clin Geriatr Med 2004; 20: 329–359
  • Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC. Protein carbonyls measurement by a sensitive ELISA method. Free Radic Biol Med 1997; 23: 361–366
  • Sitte N, Merker K, Grune T. Proteasome-dependent degradation of oxidized protein in MRC-5 fibroblasts. FEBS Lett 1998; 440: 399–402
  • Mehlhase J, Sandig G, Pantopoulos K, Grune T. Oxidation-induced ferritin turnover in microglial cells: Role of proteasome. Free Radic Biol Med 2005; 38: 276–285
  • Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: Protein carbonyl content as a marker of damage. Free Radic Res 2000; 33(Suppl.)S99–S108
  • Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 2002; 23: 795–807
  • Grune T, Shringarpure R, Sitte N, Davies KJA. Age related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol A Biol Sci Med Sci 2001; 56: B459–B467
  • Stadtman E. Protein oxidation in aging and age-related diseases. Ann NY Acad Sci 2001; 298: 22–38
  • Grune T, Davies KJA. Oxidative processes in aging. Handbook of the biology of aging5th ed. Academic Press, New York 2001; 25–58
  • Gianni P, Jan KJ, Douglas MJ, Stuart PM, Tarnopolsky MA. Oxidative stress and mitochondrial theory of aging in human skeletal muscle. Exp Gerontol 2004; 39: 1391–1400
  • Stadtman ER. Role of oxidant species in aging. Curr Med Chem 2004; 11: 1105–1112
  • Daneshvar B, Frandsen H, Autrup A, Dragsted LO. γ-Glutamyl semialdehyde and 2-amino-adipic semialdehyde: Biomarkers of oxidative damage to proteins. Biomarkers 1997; 2: 117–123
  • Brunk UT, Terman A. Lipofuscin: Mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 2002; 33: 611–619
  • Terman A, Brunk UT. Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 2006; 8: 197–204
  • Grune T, Jung T, Merker K, Davies KJ. Decreased protealysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 2004; 36: 2519–2530
  • Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol 2004; 36: 2376–2391
  • Terman A, Brunk UT. Aging as a catabolic malfunction. Int J Biochem Cell Biol 2004; 36: 2365–2375
  • Sohal RS, Brunk UT. Lipofuscin as an indicator of oxidative stress and aging. Adv Exp Med Biol 1989; 266: 17–29
  • Powell SR, Wang P, Divald A, Teichberg S, Haridas V, McCloskey TW, Davies KJA, Katzeff H. Aggregates of oxidized proteins (lipofuscin) induce apoptosis through proteasome inhibition and dysregulation of proapoptotic proteins. Free Radic Biol Med 2005; 35: 1093–1101
  • Terman A, Brunk UT. Lipofuscin. Int J Biochem Cell Biol 2004; 36: 1400–1404
  • Singh KK. Mitochondria damage checkpoint, aging, and cancer. Ann N Y Acad Sci 2006; 1067: 182–190
  • Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K, Poulsen HE. 8-Hydroxy-deoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health 1993; 40: 3991–4404
  • Gedik CM, Collins A, ESCODD (European Standards Committee on Oxidative DNA Damage). Establishing the background level of base oxidation in human lymphocyte DNA: Results of an interlaboratory validation study. FASEB J 2005; 19: 82–85
  • Barja G. Free radicals and aging. Trends Neurosci 2004; 27: 595–600
  • Kraytsberg Y, Nekhaeva A, Bodyak NB, Khrapko K. Mutation and intracellular clonal expansion of mitochondrial genomes: Two synergistic components of the aging process. Mech Aging Dev 2003; 134: 49–53
  • Chomyn A, Attardi G. MtDNA mutations in aging and apoptosis. Biochem Biophys Res Commun 2003; 304: 519–529
  • Lee BM, Kwack SJ, Kim HS. Age-related changes in oxidative DNA damage and benzo(a)pyrene diolepoxide-I (BPDE-I)-DNA adduct levels in human stomach. J Toxicol Environ Health A 2005; 68: 1599–1610
  • Te Koppel JM, Lucassen PJ, Sakkee AN, Van Asten JG, Ravid R, Swaab DF, Van Bezooijen CF. 8OHdG levels in brain do not indicate oxidative DNA damage in Alzheimer's disease. Neurobiol Aging 1996; 17: 819–826
  • Tomaru Y. Age-associated increase in amount of DNA adducts in rat and human organs and its application to age estimation. Hokkaido Igaku Zasshi 1993; 68: 520–529
  • Randerath K, Putman KL, Osterburg HH, Johnson SA, Morgan DG, Finch CE. Age-dependent increases of DNA adducts (I-compounds) in human and rat brain DNA. Mutat Res 1993; 295: 11–18
  • Randerath K, Li DH, Randerath E. Age-related DNA modifications (I-compounds): Modulation by physiological and pathological processes. Mutat Res 1990; 238: 245–253
  • Zhao C, Hemminki K. The in vivo levels of DNA alkylation products in human lymphocytes are not age dependent: An assay of 7-methyl- and 7-(2-hydroxyethyl)-guanine DNA adducts. Carcinogenesis 2002; 23: 307–310
  • Hemminki K, Thilly WG. Implications of results of molecular epidemiology on DNA adducts, their repair and mutations for mechanisms of human cancer. IARC Sci Publ 2004; 157: 217–235
  • von Zglinicki T, Martin-Ruiz CM. Telomeres as biomarkers for aging and age-related diseases. Curr Mol Med 2005; 5: 197–203
  • Saretzki G, von Zglinicki T. Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci 2002; 959: 24–29
  • Bekaert S, van Pottelbergh I, de Meyer T, Zmierczak H, Kaufman JM, van Oostveldt P, Goemaere S. Telomere length versus hormonal and bone mineral status in healthy elderly men. Mech Aging Dev 2005; 126: 1115–1122
  • Cawthon RM. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 2003; 361: 393–395
  • Lahnert P. An improved method for determining telomere length and its use in assessing age in blood and saliva. Gerontology 2005; 51: 352–356
  • Bekaert S, De Meyer T, van Oostveldt P. Telomere attrition as ageing biomarker. Anticancer Res 2005; 25: 3011–3021
  • Camera E, Picardo M. Analytical methods to investigate glutathione and related compounds in biological and pathological processes. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781: 181–206
  • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30: 1191–1212
  • Dröge W. Oxidative stress and aging. Hypoxia: through the lifecycle, RC Roach. Kluver Academic/Plenum Publishers, New York 2003; 191–200
  • Jones DP, Mody VC, Jr, Carlson JL, Lynn MJ, Sternberg P, Jr. Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med 2002; 33: 1290–1300
  • Tokunage K, Kanno K, Ochi M, Nishimiya T, Shishino K, Murase M, Makino H, Tokui S. Lipid peroxide and antioxidants in the elderly. Rinsho Byori 1998; 46: 783–789
  • Matsubara LS, Machado PE. Age-related changes of glutathione content, glutathione reductase and glutathione peroxidase activity of human erythrocytes. Braz J Med Biol Res 1991; 24: 449–454
  • Hack V, Breitkreutz R, Kinscherf R, Röhrer H, Bärtsch P, Taut F, Benner A, Dröge W. The redox state as a correlate of senescence and wasting and as a target for therampeutic intervention. Blood 1998; 92: 59–67
  • Borras C, Bambini J, Bomez-Cabrera MC, Sastre J, Pallardo FV, Mann GE, Vina J. 17beta-oestradiol up-regulates longevity-related, antioxidant expression via ERK1 and ERK2[MAPK]/NFkappaB cascade. Aging Cell 2005; 4: 113–118
  • Vina J, Borras C, Gambini J, Sastre J, Pallardo FV. Why females live longer than males? Importance of the upregulation of longevity-associated genes by estrogenic compounds. FEBS Lett 2005; 579: 2541–2545
  • Bergmeyer HU. Method of enzymatic analysis. Verlag Chemie Int., Beertfield Beach, Florida 1981
  • Aejemelaeus RT, Holm P, Kaukinen U, Metsa-Ketela TJ, Laippapla P, Hervonen AL, Alho HE. Age related changes in the peroxyl radical scavenging capacity of human plasma. Free Radic Biol Med 1997; 23: 69–75
  • Feillet-Coudray C, Tourtauchaux R, Niculescu M, Rock E, Tauveron I, Alexandre-Gouabau MC, Rayssiguier Y, Jalenques I, Mazur A. Plasma levels of 8-epiPGF2 alpha, an in vivo marker of oxidative stress are not affected by aging or Alzheimer's disease. Free Radic Biol Med 1999, 27: 463–469
  • Kuzuya M, Ando F, Iguchi A, Shimokata H. Effect of aging on serum uric acid levels: Longitudinal changes in a large Japanese population group. J Gerontol A Biol Sci Med SCi 2002; 57: M660–M664
  • Lee YS, Yang JH, Choi JC, Eun HC. Age-dependent change of uric acid level in the dermis using cutaneous microdialysis. Gerontology 2005; 51: 231–233
  • Goraca A. Assessment of total antioxidant capacity in human plasma. Folia Med (Plovdiv) 2004; 46: 16–21
  • Garibaldi S, Valentini S, Aragno I, Pronzato MA, Traverso N, Odetti P. Plasma protein oxidation and antioxidative defense during aging. Int J Vitam Nutr Res 2001; 71: 332–338
  • Succari M, Garric B, Ponteziere C, Miocque M, Cals MJ. Influence of sex and age on vitamin A and E status. Age Ageing 1991; 20: 413–416
  • Ceballos-Picot I, Triveier JM, Nicole A, Sinet PM, Thevenin M. Age-correlated modifications of copper–zinc superoxide dismutase and glutathione-related enzyme activities in human erythrocytes. Clin Chem 1992; 38: 66–70
  • Barnett YA, King CM. An investigation of antioxidant status, DNA repair capacity and mutations as a function of age in humans. Mutat Res 1995; 338: 115–128
  • Saraymen R, Kilic E, Yazar S, Cetin M. Influence of sex and age on the activity of antioxidant enzymes of polymorphonuclear leukocytes in healthy subjects. Yonsei Med J 2003; 44: 9–14
  • Murray AJ, Riley JP. Occurance of some chlorinated aliphatic hydrocarbons in the environment. Nature 1973; 242: 37–38
  • Orhan H, van Holland B, Krab B, Moeken J, Vermeulen NPE, Hollander P, Meerman JHN. Evaluation of a multi-parameter biomarker set for oxidative damage in man: Increased urinary excretion of lipid, protein and DNA oxidation products after one hour of exercise. Free Radic Res 2004; 38: 1269–1279
  • Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis 1999; 142: 1–28
  • Friguet B. Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 2006; 580: 2910–2916

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.