2,473
Views
89
CrossRef citations to date
0
Altmetric
Original

The rate of cellular hydrogen peroxide removal shows dependency on GSH: Mathematical insight into in vivo H2O2 and GPx concentrations

, , &
Pages 1201-1211 | Received 20 Jul 2007, Published online: 07 Jul 2009

References

  • Buettner GR, Ng CF, Wang W, Rodgers VGJ, Schafer FQ. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med 2006; 41: 1338–1350
  • Liu R, Buettner GR, Oberley LW. Oxygen free radicals mediate the induction of manganese superoxide dismutase gene expression by TNF-α in human oral carcinoma SCC-25 cells. Free Radic Biol Med 2000; 28: 1197–1205
  • Oberley LW, Oberley TD, Buettner GR. Cell division in normal and transformed cells: the possible role of superoxide dismutase and hydrogen peroxide. Med Hypotheses 1981; 7: 21–42
  • Jones DP. Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 2006; 9: 169–181
  • Jones DP. Disruption of mitochondrial redox circuitry in oxidative stress. Chem-Biol Interact 2006; 163: 38–53
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527–605
  • Rhee SG, Chang TS, Bae YS, Lee SR, Kang SW. Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 2003; 14(8 Suppl 3)S211–S215
  • Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 2005; 38: 1543–1552
  • Mills GC. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 1957; 229: 189–197
  • Ursini F, Maiorino M, Brigelius-Flohé R, Aumann KD, Roveri A, Schomburg D, Flohé L. Diversity of glutathione peroxidases. Methods Enzymol 1995; 252: 38–53
  • Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 1999; 27: 951–965
  • Brigelius-Flohé R, Wingler R, Muller C. Estimation of individual types of glutathione peroxidases. Methods Enzymol 2002; 347: 101–112
  • Schneider F, Flohé L. Untersuchungen uber glutathion-H2O2-oxydoreduktase (Glutathion-Peroxidase). Hoppe-Seylers Zeitschrift Fur Physiologische Chemie 1967; 348: 540–552
  • Flohé L, Schaich E, Voelter W, Wendel A. Glutathion peroxidase. 3. Spectral characteristics and experiments on reaction mechanism. Hoppe-Seylers Zeitschrift Fur Physiologische Chemie 1971; 352: 170–180
  • Flohé L. Glutathione peroxidase—enzymology and biological aspects. Klinische Wochenschrift 1971; 49: 669–683
  • Flohé L, Loschen G, Gunzle WA, Eichele E. Glutathione peroxidase, V. The kinetic mechanism. Hoppe-Seylers Zeitschrift fur Physiologische Chemie 1972; 353: 987–999
  • Maiorino M, Roveri A, Gregolin C, Ursini F. Different effects of Triton X-100, deoxycholate, and fatty acids on the kinetics of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase. Arch Biochem Biophys 1986; 251: 600–605
  • Flohé L. Glutathione peroxidase: fact and fiction. Ciba Foundation Symp 1978; 65: 95–122
  • Gunzler WA, Vergin H, Muller I, Flohé L. Glutathione peroxidase VI: the reaction of glutahione peroxidase with various hydroperoxides. Hoppe-Seylers Zeitschrift fur Physiologische Chemie 1972; 353: 1001–1004
  • Ursini F, Maiorino M, Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 1985; 839: 62–70
  • Esworthy RS, Chu FF, Geiger P, Girotti AW, Doroshow JH. Reactivity of plasma glutathione peroxidase with hydroperoxide substrates and glutathione. Arch Biochem Biophys 1993; 307: 29–34
  • Aumann KD, Bedorf N, Brigelius-Flohé R, Schomburg D, Flohé L. Glutathione peroxidase revisited—simulation of the catalytic cycle by computer-assisted molecular modeling. Biomed Environ Sci 1997; 10: 136–155
  • Salvador A, Antunes F, Pinto RE. Kinetic modeling of in vitro lipid peroxidation experiments—‘low level’ validation of a model of in vivo lipid peroxidation. Free Radic Res 1995; 23: 151–172
  • Li S, Yan T, Yang JQ, Oberley TD, Oberley LW. The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res 2000; 60: 3927–3939
  • Schafer FQ, Buettner GR. Redox state of the cell as viewed though the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30: 1191–1212
  • Mawson CA. Meaning of ‘turnover’ in biochemistry. Nature 1955; 176: 317
  • Antunes F, Salvador A, Marinho S, Alves R, Pinto RE. Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free Radic Biol Med 1996; 21: 917–943
  • Dalziel K. Initial steady state velocities in the evaluation of enzyme-coenzyme-substrate reaction mechanisms. Acta Chem Scand 1957; 11: 1706–1723
  • Forstrom JW, Stults FH, Tappel AL. Rat liver cytosolic glutathione peroxidase: reactivity with linoleic acid hydroperoxide and cumeme hydroperoxide. Arch Biochem Biophys 1979; 193: 51–55
  • Antunes F, Salvador A, Pinto RE. PHGPx and phospholipase A2/GPx: comparative importance on the reduction of hydroperoxides in rat liver mitochondria. Free Radic Biol Med 1995; 19: 669–677
  • Stults FH, Forstrom JW, Chiu DTY, Tappel AL. Rat liver glutathione peroxidase: purification and study of multiple forms. Arch Biochem Biophys 1977; 183: 490–497
  • Marinho HS, Antunes F, Pinto RE. Role of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase in the reduction of lysophospholipid hydroperoxides. Free Radic Biol Med 1997; 22: 871–883
  • Liu SY, Stadtman TC. Heparin-binding properties of selenium-containing thioredoxin reductase from HeLa cells and human lung adenocarcinoma cells. Proc Natl Acad Sci USA 1997; 94: 6138–6141
  • Giulivi C, Hockstein P, Davies KJA. Hydrogen peroxide production by red blood cells. Free Radic Biol Med 1994; 16: 123–129
  • Roy S, Khana S, Nallu K, Hunt TK, Sen SK. Dermal wound healing is subject to redox control. Molecular Therapy 2006; 13: 211–220
  • Oshino N, Chance B, Sies H, Bucher T. The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch Biochem Biophys 1973; 154: 117–131
  • Stone JR. An assessment of proposed mechanisms for sensing hydrogen peroxide in mammalian systems. Arch Biochem Biophys 2004; 422: 119–124
  • Antunes F, Cadenas E. Cellular titration of apoptosis with steady state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radic Biol Med 2001; 30: 1008–1018
  • Antunes F, Cadenas E. Estimation of H2O2 gradients across biomembranes. FEBS Lett 2000; 475: 121–126
  • Gear CW. Numerical initial-value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, NJ 1971
  • Hindmarsh, AC. GEAR: Ordinary differential equation system solver. Lawrence Livermore Laboratory. Report UCID-30001. Revision 3; 1974.
  • User's Manual. Differential equations. In: The IMSL Libraries. Version 2.0. Houston, Texas: IMSL Inc; 1991. p 755–771.
  • Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 1976; 71: 952–958
  • Oberley LW, Buettner GR. The role of superoxide dismutase in cancer: a review. Cancer Res 1979; 39: 1141–1149
  • Sun Y, Oberley LW, Elwell JH, Sierra-Rivera E. Antioxidant enzyme activities in normal and transformed mouse liver cells. Int J Cancer 1989; 44: 1028–1033
  • Hardman WE, Munoz J, Jr, Cameron IL. Role of lipid peroxidation and antioxidant enzymes in omega 3 fatty acids induced suppression of breast cancer xenograft growth in mice. Cancer Cell Int 2002; 2: 10
  • Yang J, Lam EWN, Hammad HM, Oberley TD, Oberley LW. Antioxidant enzyme levels in oral squamous cell carcinoma and normal human oral epithelium. J Oral Pathol Med 2002; 31: 71–77
  • Hu YJ, Dolan ME, Bae R, Yee H, Roy M, Glickman R, Kiremidjian-Schumacher L, Diamond AM. Allelic loss at the GPx-1 locus in cancer of the head and neck. Biol Trace Elem Res 2004; 101: 97–106
  • Venkataraman S, Jiang X, Weydert CJ, Zhang Y, Zhang HJ, Goswami PC, Ritchie JM, Oberley LW, Buettner GR. Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells. Oncogene 2005; 24: 77–89
  • Weydert CJ, Waugh TA, Ritchie JM, Iyer KS, Smith JL, Li L, Spitz DR, Oberley LW. Overexpression of manganese or copper zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med 2006; 41: 226–237
  • Makino N, Sasaki K, Hashida K, Sakakura Y. A metabolic model describing the H2O2 elimination by mammalian cells including H2O2 permeation through cytoplasmic and peroxisomal membranes: comparison with experimental data. Biochim Biophys Acta 2004; 1673: 149–159
  • Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Immunology 2002; 3: 1129–1134
  • Schnell S, Turner TE. Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog Biophys Molec Biol 2004; 85: 235–260
  • Hanggi P, Talkner P, Borkovec M. Reaction-rate theory—50 years after Kramers. Rev Mod Phys 1990; 62: 251–341
  • Li, SJ. The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by managanese superoxide dismutase [dissertation]. Iowa City, IA: University of Iowa; 1999. Available from The University of Iowa, Iowa City, IA.