197
Views
61
CrossRef citations to date
0
Altmetric
Original

The lipocalin α1-microglobulin protects erythroid K562 cells against oxidative damage induced by heme and reactive oxygen species

, , &
Pages 725-736 | Received 21 May 2008, Published online: 07 Jul 2009

References

  • Ponka P. The cell biology of heme. Am J Med Sci 1999; 318: 241–256
  • Dawson JH. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 1988; 240: 433–439
  • Bunn HF., Hemoglobin H. Human protein data, 1st Installment. Weinheim, A Haeberli. VCH, Germany 1992
  • Balla G, Vercelotti GM, Muller-Eberhard U, Eaton J, Jacob HS. Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab Invest 1991; 64: 648–655
  • Jeney V, Balla J, Yachie A, Varga Z, Vercelotti GM, Eaton JW, Balla G. Pro-oxidant and cytotoxic effects of circulating heme. Blood 2002; 100: 879–887
  • Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in humans. Tox Lett 2005; 157: 175–188
  • Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M. Hemoglobin and heme scavenging. IUBMB Life 2005; 57: 749–759
  • Laurell CB, Nyman M. Studies on the serum haptoglobin level in hemoglobinemia and its influence on renal excretion of hemoglobin. Blood 1957; 12: 493–506
  • Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK. Identification of the haemoglobin scavenger receptor. Nature 2001; 409: 198–201
  • Schaer DJ, Schaer CA, Buehler PW, Boykins RA, Schoedon G, Alayash AI, Schaffner A. CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 2006; 107: 373–380
  • Delanghe JR, Langlois MR. Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin Chim Acta 2001; 312: 13–23
  • Hvidberg V, Maniecki M, Jacobsen C, Højrup P, Møller HJ, Moestrup SK. Identification of the receptor scavenging hemopexin-heme complexes. Blood 2005; 106: 2572–2579
  • Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 1968; 61: 748–755
  • Wagener FA, Eggert A, Boerman OC, Oyen WJ, Verhofstad A, Abraham NG, Adema G, van Kooyk Y, de Witte T, Figdor CG. Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 2001; 98: 1802–1811
  • Tejler L, Grubb A. A complex-forming glycoprotein heterogeneous in charge and present in human plasma, urine and cerebrospinal fluid. Biochim Biophys Acta 1976; 439: 82–94
  • Flower DR. The lipocalin protein family: structure and function. Biochem J 1996; 318: 1–14
  • Åkerström B, Flower DR, Salier JP. Lipocalins: unity in diversity. Biochim Biophys Acta 2000; 1482: 1–8
  • DeMars DD, Katzmann JA, Kimlinger TK, Calore JD, Tracy RP. Simultaneous measurement of total and IgA-conjugated α1-microglobulin by a combined immunoenzyme/immunoradiometric assay technique. Clin Chem 1989; 35: 766–772
  • Bratt T, Olsson H, Sjöberg EM, Jergil B, Åkerström B. Cleavage of the α1-microglobulin-bikunin precursor is localized to the Golgi apparatus of rat liver cells. Biochim Biophys Acta 1993; 1157: 147–154
  • Larsson J, Wingårdh K, Berggård T, Davies JR, Lögdberg L, Strand S-E, Åkerström B. Distribution of iodide 125-labeled α1-microglobulin in rats after intravenous injections. J Lab Clin Med 2001; 137: 165–175
  • Allhorn M, Berggard J, Nordberg J, Olsson ML, Åkerström B. Processing of the lipocalin α1-microglobulin by hemoglobin induces heme-binding and heme-degradation properties. Blood 2002; 99: 1894–1901
  • Allhorn M, Lundqvist K, Schmidtchen A, Åkerström B. Heme-scavenging role of α1-microglobulin in chronic ulcers. J Invest Dermatol 2003; 121: 640–646
  • Allhorn M, Klapyta A, Åkerström B. Redox properties of the lipocalin α1-microglobulin: reduction of cytochrome c, hemoglobin, and free iron. Free Radic Biol Med 2005; 38: 557–567
  • Åkerström B, Maghzal G, Winterbourn CC, Kettle AJ. The lipocalin α1-microglobulin has radical scavenging activity. J Biol Chem 2007; 282: 31493–31503
  • Olsson MG, Allhorn M, Olofsson T, Åkerström B. Up-regulation of α1-microglobulin by hemoglobin and reactive oxygen species in hepatoma and blood cell lines. Free Radic Biol Med 2007; 42: 842–851
  • Delgado-Cañedo A, Chies JA, Nardi NB. Induction of fetal haemoglobin expression in erythroid cells-a model based on iron availability signalling. Med Hypotheses 2005; 65: 932–936
  • Rutherford TR, Clegg JB, Weatherall DJ. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature 1979; 280: 164–165
  • Kwasek A, Osmark P, Allhorn M, Lindqvist A, Åkerström B, Wasylewski Z. Production of recombinant human α1-microglobulin and mutant forms involved in chromophore formation. Protein Expr Purif 2007; 53: 145–152
  • Nilson B, Åkerström B, Lögdberg L. Cross-reacting monoclonal anti-α1-microglobulin antibodies produced by multi-species immunization and by using protein G for the screening assay. J Immunol Methods 1987; 99: 39–44
  • Baty JW, Hampton MB, Winterbourn CC. Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis. Proteomics 2002; 2: 1261–1266
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685
  • Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, Panter SS, Sharp FR. Heme oxygenase-1 is induced in glia throughout brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab 1998; 18: 257–273
  • Turner CP, Panter SS, Sharp FR. Anti-oxidants prevents focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following subarachnoid injection of lysed blood. Brain Res Mol Brain Res 1999; 65: 87–102
  • Xi GH, Keep RF, Hoof JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg 1998; 89: 991–996
  • Hebbel RP, Eaton JW. Pathobiology of heme interaction with the erythrocyte membrane. Semin Hematol 1989; 26: 136–149
  • Chou AC, Fitch CD. Mechanism of hemolysis induced by ferriprotoporphyrin IX. J Clin Invest 1981; 68: 672–677
  • Abraham NG, Kappas A. Pharamcological and clinical aspects of heme oxygenase. Pharmacol Rev 2008; 60: 79–127
  • Larsson J, Allhorn M, Åkerström B. The lipocalin α1-microglobulin binds heme in different species. Arch Biochem Biophys 2004; 432: 196–204
  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235: 1043–1046
  • Wester L, Fast J, Labuda T, Cedervall T, Wingårdh K, Olofsson T, Åkerström B. Carbohydrate groups of α1-microglobulin are important for secretion and tissue localization but not for immunological properties. Glycobiology 2000; 10: 891–900
  • Leheste JR, Rloinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, Aucouturier P, Moskaug JØ, Otto A, Christensen EI, Willnow TE. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 1999; 155: 1361–1370
  • Escribano J, Grubb A, Calero M, Méndez E. The protein HC chromophore is linked to the cysteine residue at position 34 of the polypeptide chain by a reduction-resistant bond and causes the charge heterogeneity of protein HC. J Biol Chem 1991; 266: 15758–15763
  • Berggård T, Cohen A, Persson P, Lindqvist A, Cedervall T, Silow M, Thgersen IB, Jönsson J-Å, Enghild JJ, Åkerström B. α1-Microglobulin chromophores are located to three lysine residues semiburied in the lipocalin pocket and associated with a novel lipophilic compound. Protein Sci 1999; 8: 2611–2620
  • Sala A, Campagnoli M, Perani E, Romano A, Labo S, Monzani E, Minchiotti L, Galliano M. Human α1-microglobulin is covalently bound to kynurenine-derived chromophores. J Biol Chem 2004; 279: 51033–51041
  • Heinecke JW. Tyrosyl radical production by myeloperoxidase: a phagocyte pathway for lipid peroxidation and dityrosine cross-linking of proteins. Toxicology 2002; 177: 11–22
  • Pattison DI, Dean RT, Davies MJ. Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s. Toxicology 2002; 177: 23–37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.