243
Views
13
CrossRef citations to date
0
Altmetric
Original

Metabolism-induced oxidative stress is a mediator of glucose toxicity in HT22 neuronal cells

, , , , &
Pages 876-886 | Received 17 Apr 2009, Published online: 01 Sep 2009

References

  • Robertson RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med 2006; 41: 177–184
  • Brown MJ, Asbury AK. Diabetic neuropathy. Ann Neurol 1983; 15: 2–12
  • Niakan E, Harati Y, Comstock JP. Diabetic autonomic neuropathy. Metabolism 1986; 35: 224–234
  • McCall AL. The impact of diabetes on the CNS. Diabetes 1992; 41: 557–570
  • Biessels G-J, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH. Cerebral function in diabetes mellitus. Diabetologia 1994; 37: 643–650
  • Bestetti G, Locatelli V, Tirone F, Rossi GL, Muller EE. One month of streptozotocin-diabetes induces different neuroendocrine and morphological alterations in the pituitary axis of male and female rats. Endocrinology 1985; 117: 208–216
  • Bestetti G, Rossi GL. Hypothalamic changes in diabetic Chinese hamsters. Lab Invest 1982; 47: 516–522
  • Magariños AM, McEwen BS. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci USA 2000; 97: 11056–11061
  • Reagan LP. Glucose, stress and hippocampal neuronal vulnerability. Int Rev Neurobiol 2002; 51: 289–324
  • Tay SSW, Wong WC. Gracile nucleus of streptozotocin-induced diabetic rats. J Neurocytol 1991; 20: 356–364
  • Flood JF, Mooradian AD, Morley JE. Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes 1990; 39: 1391–1398
  • De Nicola AF, Magariños AM, Foglia VG. Neuroendocrine regulation in experimental diabetes (Houssay Lecture). Diabetes. Amsterdam: Elsevier, H Rifkin, JA Colwell, SI Taylor, 1991; 3–8
  • De Nicola AF, Magariños AM, Foglia VG. Neuroendocrine regulation in experimental diabetes (Houssay Lecture). Diabetes, H Rifkin, JA Colwell, SI Taylor. Elsevier, Amsterdam 1991; 3–8
  • Chabot CH, Massicotte G, Milot M, Trudeau F, Gagne J. Impaired modulation of AMPA receptors by calcium-dependent processes in streptozotocin-induced diabetic rats. Brain Res 1997; 768: 249–256
  • Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999; 48: 1–9
  • Greene DA, Stevens MJ, Obrosova I, Feldman EL. Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur J Pharmacol 1999; 375: 217–223
  • Lovell MA, Ehmann WD, Butler SM, Markesbery WR. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease. Neurology 1995; 45: 1594–1601
  • Aragno M, Mastrocola R, Brignardello E, Catalano M, Robino G, Manti R, Parola M, Danni O, Boccuzzi G. Dehydroepiandrosterone modulates nuclear factor-kappaB activation in hippocampus of diabetic rats. Endocrinology 2002; 143: 3250–3258
  • Grillo CA, Piroli GG, Rosell DR, Hoskin EK, Mcewen BS, Reagan LP. Region specific increases in oxidative stress and superoxide dismutase in the hippocampus of diabetic rats subjected to stress. Neuroscience 2003; 121: 133–140
  • Wolff SP, Dean RT. Glucose autoxidation and protein modification: the potential role of autoxidative glycosylation in diabetes. Biochem J 1987; 245: 243–250
  • Simpson JA, Narita S, Gieseg S, Gebicki S, Gebicki JM, Dean RT. Long-lived reactive species on free-radical-damaged proteins. Biochem J 1992; 282: 621–624
  • Reagan LP, Magarinos AM, Yee DK, Swzeda LI, Van Bueren A, McCall A, McEwen BS. Oxidative stress and HNE conjugation of GLUT3 are increased in the 1 hippocampus of diabetic rats subjected to stress. Brain Res 2000; 862: 292–300
  • Stolc, S, Bauer, V, Benes, L, Tichy, M. Medicine with antiarrhythmic and antihypoxic activity and its methods of preparation, Patent CS. 229067, SWED. 8204693–9, BELG. 894148, SWISS 651 754, BRD. P-323 1088, SPAIN 553 017. JAP., 1983; 151: 4040
  • Stolc, S, Povazanec, F, Bauer, V, Majekova, M, Wilcox, AL, Snirc, V, Rackova, L, Sotnikova, R, Stefek, M, Gasparova-Kvaltinova, Z, Gajdosikova, A, Mihalova, D. Slovak Patent RegistrationPP1321. 2003.
  • Tolnai S. A method for viable cell count. Methods Cell Sci 1975; 1: 37–38
  • Ribble D, Goldstein NB, Norris DA, Shellman YG. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 2005; 5: 12–19
  • Giardina C, Inan MS. Nonsteroidal anti-inflammatory drugs, short-chain fatty acids, and reactive oxygen metabolism in human colorectal cancer cells. Biochim Biophys Acta 1998; 1401: 277–288
  • Swift LM, Sarvazyan N. Localization of dichlorofluorescin in cardiac myocytes: implications for assessment of oxidative stress. Am J Physiol Heart Circ Physiol 2000; 278: H982–H990
  • Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC. Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 1997; 23: 361–366
  • Jung T, Engels M, Kaiser B, Poppek D, Grune T. Intracellular distribution of oxidized proteins and proteasome in HT22 cells during oxidative stress. Free Radic Biol Med 2006; 40: 1303–1312
  • Smith MA, Syre LM, Anderson VE, Harris PLR, Beal MF, Kowall N, Perry G. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J Histochem Cytochem 1998; 46: 731–735
  • Li ZG, Zhang W, Grunberger G, Sima AA. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 2002; 946: 221–231
  • Jackson-Guilford J, Leander JD, Nisenbaum LK. The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci Lett 2000; 293: 91–94
  • Reagan LP, Magarinos AM, McEwen BS. Neurological changes induced by stress in streptozotocin diabetic rats. Ann NY Acad Sci 1999; 893: 126–137
  • Saravia FE, Revsin Y, Deniselle MCG, Gonzalez SL, Roig P, Lima A, Homo-Delarche F, De Nicola AF. Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res 2002; 957: 345–353
  • Baydas G, Reiter RJ, Yasar A, Tuzcu M, Akdemir I, Nedzvetskij VS. Melatonin reduces glial reactivity in the hippocampus, cortex, and cerebellum of streptozotocin-induced diabetic rats. Free Radic Biol Med 2003; 35: 797–804
  • Kinoshita JH, Kador P, Catiles M. Aldose reductase in diabetic cataracts. JAMA 1981; 246: 246–257
  • Greene DA, Sima AAF, Stevens MJ, Feldman EL, Lattimer SA. Complications: neuropathy, pathogenetic considerations. Diabetes Care 1992; 15: 1902–1925
  • Wolf G, Schroeder R, Zahner G, Stahl RAK, Shankland SJ. High glucose-induced hypertrophy of mesangial cells requires p27Kip1, an inhibitor of cyclin-dependent kinases. Am J Pathol 2001; 158: 1091–1100
  • Wolf G, Thaiss F. Hyperglycaemia—pathophysiological aspects at the cellular level. Nephrol Dial Transplant 1995; 10: 1109–1112
  • Olbricht CJ, Geissinger B. Renal hypertrophy in streptozotocin diabetic rats: role of proteolytic lysosomal enzymes. Kidney Int 1992; 11: 966–972
  • Wonisch W, Kohlwein SD, Schaur J, Tatzber F, Guttenberger H, Zarkovic N, Winkler R, Esterbauer H. Treatment of the budding yeast Saccharomyces cerevisiae with the lipid peroxidation product 4-HNE provokes a temporary cell cycle arrest in G1 phase. Free Radic Biol Med 1998; 25: 682–687
  • Poljak-Blazi M, Zarkovic N, Schaur RJ. Impaired proliferation and DNA synthesis of a human tumor cell line (HeLa) caused by short treatment with the anti-anemic drug jectofer (ferric-sorbitol-citrate) and the lipid peroxidation product 4-hydroxynonenal. Cancer Biother Radiopharm 1998; 13: 395–401
  • Kreuzer T, Grube R, Wutte A, Zarkovic N, Schaur RJ. 4-Hydroxynonenal modifies the effects of serum growth factors on the expression of the c-fos proto-oncogene and the proliferation of HeLa carcinoma cells. Free Radic Biol Med 1998; 25: 42–49
  • Kreuzer T, Zarkovič N, Grube R, Schaur RJ. Inhibition of HeLa cell proliferation by 4-hydroxynonenal is associated with enhanced expression of the c-fos oncogene. Cancer Biother Radiopharm 1997; 12: 131–136
  • Häussinger D. The role of cellular hydration in the regulation of cell function. Biochem J 1996; 313: 697–710
  • Gieseg SP, Simpson JA, Charlton TS, Duncan MW, Dean RT. Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry 1993; 32: 4780–4786
  • Parihar MS, Chaudhary M, Shetty R, Hemnani T. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci 2004; 11: 397–402
  • Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787–790
  • Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care 2002; 5: 561–568
  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine Rev 2002; 23: 599–622
  • Aragno M, Parola S, Brignardello E, Mauro A, Tamagno E, Manti R, Danni O, Boccuzzi G. Dehydroepiandrosterone prevents oxidative injury induced by transient ischemia/reperfusion in the brain of diabetic rats. Diabetes 2000; 49: 1924–1931
  • Aragno M, Parola S, Tamagno E, Brignardello E, Manti R, Danni O, Boccuzzi G. Oxidative derangement in rat synaptosomes induced by hyperglycaemia: restorative effect of dehydroepiandrosterone treatment. Biochem Pharmacol 2000; 60: 389–395
  • Jung T, Bader N, Grune T. Oxidized proteins: Intracellular distribution and recognition by the proteasome. Arch Biochem Biophys 2007; 462: 231–237
  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990; 186: 464–478
  • Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996; 29: 10289–10297
  • Rivett AJ. Proteasomes: multicatalytic proteinase complexes. Biochem J 1993; 291: 1–10
  • Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, Pilgrimm H, Grune T. Iron-oxide-particles for molecular magnetic resonance-imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med 2004; 36: 976–984
  • Mehlhase J, Sandig G, Pantopoulos K, Grune T. Oxidation-induced ferritin turnover in microglial cells: role of proteasome. Free Radic Biol Med 2005; 38: 276–285
  • Petropoulos I, Friguet B. Protein maintenance in aging and replicative senescence: a role for the peptide methionine sulfoxide reductase. Biochim Biophys Acta 2005; 1703: 261–266
  • Dunlop RA, Rodgers KJ, Dean RT. Recent developments in the intracellular degradation of oxidized proteins. Free Radic Biol Med 2002; 33: 894–906
  • Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 2006; 38: 317–332
  • Unger RH. Lipotoxic diseases. Annu Rev Med 2002; 53: 319–336
  • Wang H, Kouri G, Wollheim CB. ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 2005; 118: 3905–3915
  • Cervantes-Laurean D, Roberts MJ, Jacobson EL, Jacobson MK. Nuclear proteasome activation and degradation of carboxymethylated histones in human keratinocytes following glyoxal treatment. Free Radic Biol Med 2005; 38: 786–795
  • Keller JN. Interplay between oxidative damage, protein synthesis, and protein degradation in Alzheimer's disease. J Biomed Biotechnol 2006; 2006: 1–3
  • German SM. Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates. Proc Natl Acad Sci USA 1993; 90: 1781–1785
  • Salas J, Salas M, Viruela E, Sols A. Glucokinase of rabbit liver. Purification properties. J Biol Chem 1965; 240: 1014–1018
  • Lee J, Bruce-Keller AJ, Kruman Y, Chan SL, Mattson MP. 2-deoxy-d-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J Neurosci Res 1999; 57: 48–61
  • Staal GE, Kalff A, Heesbeen EC, Van Veelen CWM, Rijksen G. Subunit composition, regulatory properties, and phosphorylation of phosphofructokinase from human gliomas. Cancer Res 1987; 47: 5047–5051
  • Kelleher JA, Chan TYY, Chan PH, Gregory GA. Protection of astrocytes by fructose 1,6-bisphosphate and citrate ameliorates neuronal injury under hypoxic conditions. Brain Res 1996; 726: 167–173
  • Horakova L, Stolc S. Antioxidant and pharmacodynamic effects of pyridoindole stobadine. Gen Pharmacol 1998; 30: 627–638
  • Stefek M, Sotnikova R, Okruhlicova L, Volkovova K, Kucharska J, Gajdosik A, Gajdosikova A, Mihalova D, Hozova R, Tribulova N, Gvozdjakova A. Effect of dietary supplementation with the pyridoindole antioxidant stobadine on antioxidant state and ultrastructure of diabetic rat myocardium. Acta Diabetol 2000; 37: 111–117
  • Stefek M, Gajdosik A, Tribulova N, Navarova J, Volkovova K, Weismann P, Gajdosikova A, Drimal J, Mihalova D. The pyridoindole antioxidant stobadine attenuates albuminuria, enzymuria, kidney lipid peroxidation and matrix collagen cross-linking in streptozotocin-induced diabetic rats. Methods Find Exp Clin Pharmacol 2002; 24: 565–571
  • Ulusu NN, Sahilli M, Avci A, Canbolat O, Ozansoy G, Ari N, Bali M, Stefek M, Stolc S, Gajdosik A, Karasu C. Pentose phosphate pathway, glutathione-dependent enzymes and antioxidant defense during oxidative stress in diabetic rodent brain and peripheral organs: effects of stobadine and vitamin E. Neurochem Res 2003; 28: 815–823
  • Tokudome T, Horio T, Yoshihara F, Suga S, Kawano Y, Kohno M, Kangawa K. Direct effects of high glucose and insulin on protein synthesis in cultured cardiac myocytes and DNA and collagen synthesis in cardiac fibroblasts. Metabolism 2004; 53: 710–715
  • Gomez E, Powell ML, Greenman IC, Herbert TP. Glucose-stimulated protein synthesis in pancreatic β-cells parallels an increase in the availability of the translational ternary complex (eIF2-GTP Met-tRNAi) and the dephosphorylation of eIF2α. J Biol Chem 2004; 279: 53937–53946
  • Yeshao W, Gu J, Peng X, Nairn AC, Nadler JL. Elevated glucose activates protein synthesis in cultured cardiac myocytes. Metabolism 2005; 54: 1453–1460
  • Harrison DH, Bohren KM, Ringe D, Petsko GA, Gabbay KH. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry 1994; 33: 2011–2020
  • Sagara Y, Schubert D. The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress. J Neurosci 1998; 18: 6662–6671
  • Jekabsone A, Neher JJ, Borutaite V, Brown GC. Nitric oxide from neuronal nitric oxide synthase sensitises neurons to hypoxia-induced death via competitive inhibition of cytochrome oxidase. J Neurochem 2007; 103: 346–356
  • Ikeda J, Ma L, Morita I, Murota S. Involvement of nitric oxide and free radical (O2-) in neuronal injury induced by deprivation of oxygen and glucose in vitro. Acta Neurochir Suppl (Wien) 1994; 60: 94–97
  • Papadopoulos MC, Koumenis IL, Dugan LL, Giffard RG. Vulnerability to glucose deprivation injury correlates with glutathione levels in astrocytes. Brain Res 1997; 748: 151–156
  • Kultz D. Hyperosmolality triggers oxidative damage in kidney cells. Proc Natl Acad Sci USA 2004; 101: 9177–9178
  • Zhang Z, Dmitrieva NI, Park JH, Levine RL, Burg MB. High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA. Proc Natl Acad Sci USA 2004; 101: 9491–9496

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.