462
Views
49
CrossRef citations to date
0
Altmetric
Original

Selenium and diabetes: an enigma?

, , &
Pages 1029-1059 | Received 28 Apr 2009, Published online: 08 Oct 2009

References

  • W Gerok, Huber, C, Meinertz, T, Zeidler, H. Die Innere Medizin 11th rev ed. Schattauer Verlag Stuttgart, Germany; 2007.
  • Kerner, W, Brückel, J, Böhm, BO. Definition, Klassifikation und Diagnostik des Diabetes mellitus. WA Scherbaum, Lauterbach, KW, Joost, HG. Evidenzbasierte Diabetes-Leitlinien DDG. Überarbeitung der 1. Auflage von 2001, Deutsche Diabetes Gesellschaft (DDG), BochumGermany, 2004, 1–10. Available online at: http://web4health.info/de/aux/057-002.pdf.
  • National Institute of Diabetes and Digestive and Kidney Diseases. National diabetes statistics. 2007 fact sheet. Bethesda, MD: US Department of Health and Human Services, National Institutes of Health; 2008.
  • Giani, G, Janka, HU, Hauner, H, Standl, E, Schiel, R, Neu, A, Rathmann, W, Rosenbauer, J. Epidemiologie und Verlauf des Diabetes mellitus in Deutschland. WA Scherbaum, Lauterbach, KW, Joost, HG. Evidenzbasierte Diabetes-Leitlinien DDG. Überarbeitung der 1. Auflage von 2001, Deutsche Diabetes Gesellschaft (DDG), BochumGermany, 2004, 1–12. Available online at: http://www.deutsche-diabetes-gesellschaft.de/redaktion/mitteilungen/leitlinien/EBL_Epidemiologie_Update_2004.pdf.
  • Hauner H. Die Kosten des Diabetes und seiner Komplikationen in Deutschland. Dtsch Med Wochenschr 2006; 131: 240–242
  • Kapellen TM, Galler A, Böttner A, Kiess W. Epidemiologie, Behandlungsstrategie und Prävention von Typ 2-Diabetes bei Kindern und Jugendlichen. Dtsch Med Wochenschr 2004; 129: 1519–1523
  • Ioannidis I. The road from obesity to type 2 diabetes. Angiology 2008; 59: 39–43
  • Lusis AJ, Attie AD, Reue K. Metabolic syndrome: from epidemiology to systems biology. Nature Rev Genet 2008; 9: 819–830
  • Hauner H, Landgraf R, Schulze J, Spranger J, Standl E. Prävention des Typ-2-Diabetes mellitus. Dtsch Med Wochenschr 2005; 130: 17
  • Pallauf J, Müller AS. Inorganic feed additives. Biology of nutrition in growing animals. Vol 4 of the Biology of growing animals series, R Mosenthin, J Zentek, T Zebrowska. Elsevier, London 2006; 179–249
  • Burk RF, Hill KE, Awad JA, Morrow JD, Lyons PR. Liver and kidney necrosis in selenium-deficient rats depleted of glutathione. Lab Invest 1995; 72: 723–730
  • Moir DC, Masters HG. Hepatosis dietetica, nutritional myopathy, mulberry heart disease and associated hepatic selenium level in pigs. Aust Vet J 1979; 55: 360–364
  • Kozat S. Serum T3 and T4 concentrations in lambs with nutritional myodegeneration. J Vet Intern Med 2007; 21: 1135–1137
  • Cooper LT, Rader V, Ralston NV. The roles of selenium and mercury in the pathogenesis of viral cardiomyopathy. Congest Heart Fail 2007; 13: 193–199
  • Flohe L, Günzler WA, Schock HH. Glutathione peroxidase: a selenoenzyme. FEBS Lett 1973; 32: 132–134
  • Gromer S, Eubel JK, Lee BL, Jacob J. Human selenoproteins at a glance. Cell Mol Life Sci 2005; 62: 2414–2437
  • Köhrle J. Selenium and the control of thyroid hormone metabolism. Thyroid 2005; 15: 841–853
  • Gromer S, Urig S, Becker K. The thioredoxin system–from science to clinic. Med Res Rev 2004; 24: 40–89
  • Burk RF, Hill KE. Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 2005; 25: 215–235
  • Lacourciere GM. Biosynthesis of selenophosphate. Biofactors 1999; 10: 237–244
  • Lu J, Holmgren A. Selenoproteins. J Biol Chem 2009; 284: 723–727
  • National Institute of Health, Office of Dietary Supplements. Dietary Supplement Fact Sheet: Selenium. National Institutes of Health (NIH), 9000 Rockville Pike Bethesda, Maryland 20892 Available online at: http://ods.od.nih.gov/factsheets/selenium.asp. First posted: 05 Dec. 2003.
  • DACH (Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährungsforschung, Schweizerische Vereinigung für Ernährung). Referenzwerte für die Nährstoffzufuhr. 1. Frankfurt/Main: Umschau Braus GmbH Verlagsgesellschaft; 2000.
  • NRC (National Research Council). Nutrient requirements of laboratory animals. 4th rev ed. Washington, DC: National Academy Press; 1995.
  • NRC (National Research Council). Nutrient requirements of poultry. 9th rev ed. Washington, DC: National Academy Press; 1994.
  • NRC (National Research Council). Nutrient requirements of swine. 10th rev ed. Washington, DC: National Academy Press; 1998.
  • NRC (National Research Council). Selenium. Mineral tolerance of domestic animals. Washington, DC: National Academy Press; 1980. 392–420
  • RKI-Kommission. Methoden und Qualitätssicherung in der Umweltmedizin: Selen in der Umweltmedizin. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz. 2006;49: 88–102. Available online at: www.apug.de/archiv/pdf/Selen-BGBL-012006 Published online 15 Dec. 2005.
  • Goldhaber SB. Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 2003; 38: 232–242
  • Sunde RA, Raines AM, Barnes KM, Evenson JK. Selenium status highly-regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Biosci Rep 2009; 29: 329–338, Jun 25
  • Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidises. Free Radic Biol Med 2000; 27: 951–965
  • Wingler K, Böcher M, Flohé L, Kollmus H, Brigelius-Flohé R. mRNA stability and selenocysteine insertion sequence efficiency rank gastrointestinal glutathione peroxidase high in the hierarchy of selenoproteins. Eur J Biochem 1999; 259: 149–157
  • Müller C, Wingler K, Brigelius-Flohé R. 3'UTRs of glutathione peroxidases differentially affect selenium-dependent mRNA stability and selenocysteine incorporation efficiency. Biol Chem 2003; 384: 11–18
  • Sunde RA. What can molecular biology tell us about selenium requirements?. Proceedings of the 3nd Mid-Atlantic Nutrition Conference, NG Zimmermann. University of Maryland, College Park, MD 2005; 8–16
  • Weiss Sachdev S, Sunde RA. Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and -4 in rat liver. Biochem J 2001; 357: 851–858
  • Bermano G, Arthur JR, Hesketh JE. Selective control of cytosolic glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase mRNA stability by selenium supply. FEBS Lett 1996; 387: 157–160
  • Flohé L. Selenium in mammalian spermiogenesis. Biol Chem 2007; 388: 987–995
  • Heirman I, Ginneberge D, Brigelius-Flohé R, Hendrickx N, Agostinis P, Brouckaert P, Rottiers P, Grooten J. Blocking tumor cell eicosanoid synthesis by GPx4 impedes tumor growth and malignancy. Free Radic Biol Med 2006; 40: 285–294
  • Mueller AS, Pallauf J. Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem 2006; 17: 548–560
  • Wolffram S, Berger B, Grenacher B, Scharrer E. Transport of selenoamino acids and their sulfur analogues across the intestinal brush border membrane of pigs. J Nutr 1989; 119: 706–712
  • Wolffram S, Grenacher B, Scharrer E. Transport of selenate and sulphate across the intestinal brush-border membrane of pig jejunum by two common mechanism. Q J Exp Physiol 1988; 73: 103–111
  • Scharrer E, Senn E, Wolffram S. Stimulation of mucosal uptake of selenium from selenite by some thiols at various sites of the intestine. Biol Trace Elem Res 1992; 33: 109–120
  • Senn E, Scharrer E, Wolffram S. Effects of glutathione and of cysteine on intestinal absorption of selenium from selenite. Biol Trace Elem Res 1992; 33: 103–108
  • Haratake M, Hongoh M, Miyauchi M, Hirakawa R, Ono M, Nakayama M. Albumin-mediated selenium transfer by a selenotrisulfide relay mechanism. Inorg Chem 2008; 47: 6273–6280
  • Suzuki KT, Ohta Y, Suzuki N. Availability and metabolism of 77Se-methylseleninic acid compared simultaneously with those of three related selenocompounds. Toxicol Appl Pharmacol 2006; 217: 51–62
  • Ohta Y, Suzuki KT. Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium. Toxicol Appl Pharmacol 2008; 226: 169–177
  • Brigelius-Flohé R. Selenium compounds and selenoproteins in cancer. Chem Biodivers 2008; 5: 389–395
  • Ganther HE. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis 1999; 20: 1657–1666
  • Fridlyand LE, Philipson LH. Oxidative reactive species in cell injury. Mechanisms in diabetes mellitus and therapeutic approaches. Ann NY Acad Sci 2005; 1066: 136–151
  • Fridlyand LE, Philipson LH. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic beta-cells. Diabetes 2004; 53: 1942–1948
  • Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in beta-cell function. Nature 2001; 414: 788–791
  • Rutter GA. Nutrient-secretion coupling in the pancreatic islet beta-cell: recent advances. Mol Aspects Med 2001; 22: 247–284
  • Bindokas VP, Kuznetsov A, Sreenan S. Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem 2003; 278: 9796–9801
  • Koshkin V, Wang X, Scherer PE. Mitochondrial functional state in clonal pancreatic beta-cells exposed to free fatty acids. J Biol Chem 2003; 278: 19709–19715
  • Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxity in pancreatic islet β cells in diabetes. J Biol Chem 2004; 279: 42351–42354
  • Brookes PS, Yoon Y, Robotham JL. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004; 287: C817–C833
  • Shimizu, Y, Hendershot, LM. Oxidative folding: cellular strategies for dealing with the resultant equimolar production of reactive oxygen species. Antioxid Redox Signal 2009. Feb 25. [Epub ahead of print]
  • Maeder K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monosaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes 2003; 52: 726–733
  • El-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, Joly E, Dbaibo G, Rosenberg L, Prentki M. Saturated fatty acids synergize with elevated glucose to cause pancreatic β-cell death. Endocrinology 2003; 144: 4154–4163
  • Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY. Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function. Diabetes 2001; 50: 69–76
  • Piro S, Anello M, Di Pietro C, Lizzio MN, Patane G, Rabuazzo AM, Vigneri R, Purrello M, Purrello F. Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 2002; 51: 1340–1347
  • Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH. Lipoapoptosis in β-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem 1998; 273: 32487–32490
  • Shimabukuro M, Zhou Y-T, Levi M, Unger RH. Fatty-acid-induced β-cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 1998; 95: 2498–2505
  • Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Jr, Ory DS, Schaffer JE. Triglyceride accumulation protects against fatty acid-induced lipotoxity. Proc Natl Acad Sci USA 2003; 100: 3077–3082
  • Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between cytotoxity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 2001; 50: 1771–1777
  • Busch AK, Gurisik E, Cordery DV, Sudlow M, Denyer GS, Laybutt DR, Hughes WE, Biden TJ. Increased fatty acid desaturation and enhanced expression of stearoyl coenzyme A desaturase protects pancreatic β-cells from lipoapoptosis. Diabetes 2005; 54: 2917–2924
  • Maestre I, Jordan J, Calvo S, Reig JA, Cena V, Soria B, Prentki M, Roche E. Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the β-cell line INS-1. Endocrinology 2003; 144: 335–345
  • Roduit R, Morin J, Masse F, Segall I, Roche E, Newgard CB, Assimacopoulos-Jeannet F, Prentki M. Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-α gene in the pancreatic β-cell. J Biol Chem 2000; 275: 35799–35806
  • Ruderman N, Prentki M. AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 2004; 3: 340–351
  • Wang X, Li H, De Leo D, Guo W, Koshkin V, Fantus IG, Giacca A, Chan CB, Der S, Wheeler MB. Gene and protein expression profiling of reactive oxygen species-associated lipotoxicity in the pancreatic β-cell line MIN6. Diabetes 2004; 53: 129–140
  • Busch AK, Cordery D, Denyer GS, Biden TJ. Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic β-cell function. Diabetes 2002; 51: 977–987
  • Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL. Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-?B and endoplasmatic reticulum stress. Endocrinology 2004; 145: 5087–5096
  • Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmatic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology 2006; 147: 3398–3407
  • Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ. Endoplasmatic reticulum stress contributes to β-cell apoptosis in type 2 diabetes. Diabetologia 2007; 50: 752–763
  • Evenson JK, Wheeler AD, Blake SM, Sunde RA. Selenoprotein mRNA is expressed in blood at levels comparable to major tissues in rats. J Nutr 2004; 134: 2640–2645
  • Tonooka N, Oseid E, Zhou H, Harmon JS, Robertson RP. Glutathione peroxidase protein expression and activity in human islets isolated for transplantation. Clin Transplant 2007; 21: 767–772
  • Dowling P, O'Driscoll L, O'Sullivan F, Dowd A, Henry M, Jeppesen PB, Meleady P, Clynes M. Proteomic screening of glucose-responsive and glucose non-responsive MIN-6 beta cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics 2006; 6: 6578–6587
  • Kawamori D, Kaneto H, Nakatani Y, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 2006; 281: 1091–1098
  • Glauser DA, Schlegel W. The emerging role of FOXO transcription factors in pancreatic beta cells. J Endocrinol 2007; 193: 195–207
  • Erol A. Insulin resistance is an evolutionarily conserved physiological mechanism at the cellular level for protection against increased oxidative stress. Bioessays 2007; 29: 811–818
  • Li X, Chen H, Epstein PN. Metallothionein and catalase sensitize to diabetes in nonobese diabetic mice: reactive oxygen species may have a protective role in pancreatic beta-cells. Diabetes 2006; 55: 1592–1604
  • Wang XD, Vatamaniuk MZ, Wang SK, Roneker CA, Simmons RA, Lei XG. Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia 2008; 51: 1515–1524
  • Van Obberghen E, Baron V, Delahaye L, Emanuelli B, Filippa N, Giorgetti-Peraldi S, Lebrun P, Mothe-Satney I, Peraldi P, Rocchi S, Sawka-Verhelle D, Tartare-Deckert S, Giudicelli J. Surfing the insulin signaling web. Eur J Clin Invest 2001; 31: 966–977
  • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799–806
  • Schmoll D, Walker KS, Alessi DR, Grempler R, Burchell A, Guo S, Walther R, Unterman TG. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J Biol Chem 2000; 275: 36324–36333
  • Barthel A, Schmoll D, Krüger KD, Bahrenberg G, Walther R, Roth RA, Joost HG. Differential regulation of endogenous glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression by the forkhead transcription factor FKHR in H4IIE-hepatoma cells. Biochem Biophys Res Commun 2001; 285: 897–902
  • Lizcano JM, Alessi DR. The insulin signalling pathway. Curr Biol 2002; 12: R236–R238
  • Asnaghi L, Bruno P, Priulla M, Nicolin A. mTOR: a protein kinase switching between life and death. Pharmacol Res 2004; 50: 545–549
  • Green, CD, Jump, DB, Olson, LK. Elevated insulin secretion from liver X receptor-activated pancreatic beta-cells involves increased de novo lipid synthesis and triacylglyceride turnover. Endocrinology. 2009, Feb 19. [Epub ahead of print]
  • Ogawa W, Matozaki T, Kasuga M. Role of binding proteins to IRS1 in insulin signalling. Mol Cell Biochem 1998; 182: 13–22
  • Wu X, Zhu L, Zilbering A, Mahadev K, Motoshima H, Yao J, Goldstein BJ. Hyperglycemia potentiates H(2)O(2) production in adipocytes and enhances insulin signal transduction: potential role for oxidative inhibition of thiol-sensitive protein-tyrosine phosphatases. Antioxid Redox Signal 2005; 7: 526–537
  • Goldstein BJ, Mahadev K, Wu X, Zhu L, Motoshima H. Role of insulin-induced reactive oxygen species in the insulin signaling pathway. Antioxid Redox Signal 2005; 7: 1021–1031
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–820
  • Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006; 212: 167–178
  • Zhang W, Zheng S, Storz P, Min W. Protein kinase D specifically mediates apoptosis signal-regulating kinase 1-JNK signaling induced by H2O2 but not tumor necrosis factor. J Biol Chem 2005; 280: 19036–19044
  • Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005; 121: 115–125
  • Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004; 117: 421–426
  • Matsumato M, Accili D. All roads lead to FoxO. Cell Metab 2006; 1: 215–216
  • Kawamori D, Kaneto H, Nakatani Y, Matsuoaka TA, Matsuhisa M. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 2006; 281: 1091–1098
  • Sajan, MP, Standaert, ML, Nimal, S, Varanasi, U, Pastoor, T, Mastorides, S, Braun, U, Leitges, M, Farese, R. Critical role of atypical protein kinase C in activating hepatic SREBP-1c and NFkappa B in obesity. J Lipid Res 2009, Feb 6. [Epub ahead of print]
  • Wang C, Liu M, Riojas RA, Xin X, Gao Z, Zeng R, Wu J, Dong LQ, Liu F. Protein kinase C theta (PKCtheta)-dependent phosphorylation of PDK1 at Ser504 and Ser532 contributes to palmitate-induced insulin resistance. J Biol Chem 2009; 2284: 2038–2044
  • Mack E, Ziv E, Reuveni H, Kalman R, Niv MY, Jörns A, Lenzen S, Shafrir E. Prevention of insulin resistance and beta-cell loss by abrogating PKCepsilon-induced serine phosphorylation of muscle IRS1 in Psammomys obesus. Diabetes Metab Res Rev 2008; 24: 577–584
  • Kusakabe T, Tanioka H, Ebihara K, Hirata M, Miyamoto L, Miyanaga F, Hige H, Aotani D, Fujisawa T, Masuzaki H, Hosoda K, Nakao K. Beneficial effects of leptin on glycaemic and lipid control in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and a high-fat diet. Diabetologia 2009; 52: 675–683
  • Hennige AM, Stefan N, Kapp K, Lehmann R, Weigert C, Beck A, Moeschel K, Mushack J, Schleicher E, Häring HU. Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1. FASEB J 2006; 20: 1206–1208
  • Nieto-Vazquez I, Fernández-Veledo S, de Alvaro C, Lorenzo M. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes 2008; 57: 3211–3221
  • Kim JH, Bachmann RA, Chen J. Chapter 21 interleukin-6 and insulin resistance. Vitam Horm 2009; 80: 613–633
  • Zhang J, Gao Z, Yin J, Quon MJ, Ye J. S6K directly phosphorylates IRS1 on Ser-270 to promote insulin resistance in response to TNF-(alpha) signaling through IKK2. J Biol Chem 2008; 283: 35375–35382
  • Zhang Z, Zhao M, Li Q, Zhao H, Wang J, Li Y. Acetyl-l-carnitine inhibits TNF-alpha-induced insulin resistance via AMPK pathway in rat skeletal muscle cells. FEBS Lett 2009; 583: 470–474
  • Cassese A, Esposito I, Fiory F, Barbagallo AP, Paturzo F, Mirra P, Ulianich L, Giacco F, Iadicicco C, Lombardi A, Oriente F, Van Obberghen E, Beguinot F, Formisano P, Miele C. In skeletal muscle advanced glycation end products (AGEs) inhibit insulin action and induce the formation of multimolecular complexes including the receptor for AGEs. J Biol Chem 2008; 283: 36088–36099
  • Handwerger S, Freemark M. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab 2000; 13: 343–356
  • Ryan EA, Enns L. Role of gestational hormones in the induction of insulin resistance. J Clin Endocrinol Metab 1988; 67: 341–347
  • Beck P, Daughaday WH. Human placental lactogen: studies of its acute metabolic effects and disposition in normal man. J Clin Invest 1967; 46: 103–110
  • Brelje TC, Scharp DW, Lacy PE, Ogren L, Talamantes F, Robertson M, Friesen HG, Sorenson RL. Effect of homologous placental lactogens, prolactins, and growth hormones on islet B-cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology 1993; 132: 879–887
  • Barbour LA, Shao J, Qiao L, Pulawa LK, Jensen DR, Bartke A, Garrity M, Draznin B, Friedman JE. Human placental growth hormone causes severe insulin resistance in transgenic mice. Am J Obstet Gynecol 2002; 186: 512–517
  • Kirwan JP, Varastehpour A, Jing M, Presley L, Shao J, Friedman JE, Catalano PM. Reversal of insulin resistance postpartum is linked to enhanced skeletal muscle insulin signaling. J Clin Endocrinol Metab 2004; 89: 4678–4684
  • Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 2005; 54: 2351–2359
  • Barbour LA, Mizanoor Rahman S, Gurevich I, Leitner JW, Fischer SJ, Roper MD, Knotts TA, Vo Y, McCurdy CE, Yakar S, Leroith D, Kahn CR, Cantley LC, Friedman JE, Draznin B. Increased P85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J Biol Chem 2005; 280: 37489–37494
  • Whiting PH, Kalansooriya A, Holbrook I, Haddad F, Jennings PE. The relationship between chronic glycaemic control and oxidative stress in type 2 diabetes mellitus. Br J Biomed Sci 2008; 65: 71–74
  • Faure P, Ramon O, Favier A, Halimi S. Selenium supplementation decreases nuclear factor-kappa B activity in peripheral blood mononuclear cells from type 2 diabetic patients. Eur J Clin Invest 2004; 34: 475–481
  • Kähler W, Kuklinski B, Rühlmann C, Plötz C. [Diabetes mellitus—a free radical-associated disease. Results of adjuvant antioxidant supplementation]. Z Gesamte Inn Med 1993; 48: 223–232
  • Hawkes WC, Alkan Z, Lang K, King JC. Plasma selenium decrease during pregnancy is associated with glucose intolerance. Biol Trace Elem Res 2004; 100: 19–29
  • Tan M, Sheng L, Qian Y, Ge Y, Wang Y, Zhang H, Jiang M, Zhang G. Changes of serum selenium in pregnant women with gestational diabetes mellitus. Biol Trace Elem Res 2001; 83: 231–237
  • Kilinc M, Guven MA, Ezer M, Ertas IE, Coskun A. Evaluation of serum selenium levels in Turkish women with gestational diabetes mellitus, glucose intolerants, and normal controls. Biol Trace Elem Res 2008; 123: 35–40
  • Berg EA, Wu JY, Campbell L, Kagey M, Stapleton SR. Insulin-like effects of vanadate and selenate on the expression of glucose-6-phosphate dehydrogenase and fatty acid synthase in diabetic rats. Biochimie 1995; 77: 919–924
  • Battell ML, Delgatty HL, McNeill JH. Sodium selenate corrects glucose tolerance and heart function in STZ diabetic rats. Mol Cell Biochem 1998; 179: 27–34
  • Sheng XQ, Huang KX, Xu HB. New experimental observation on the relationship of selenium and diabetes mellitus. Biol Trace Elem Res 2004; 99: 241–253
  • Ozdemir S, Ayaz M, Can B, Turan B. Effect of selenite treatment on ultrastructural changes in experimental diabetic rat bones. Biol Trace Elem Res 2005; 107: 167–179
  • Ulusu NN, Turan B. Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol Trace Elem Res 2005; 103: 207–216
  • Agbor GA, Vinson JA, Patel S, Patel K, Scarpati J, Shiner D, Wardrop F, Tompkins TA. Effect of selenium- and glutathione-enriched yeast supplementation on a combined atherosclerosis and diabetes hamster model. J Agric Food Chem 2007; 55: 8731–8736
  • Erbayraktar Z, Yilmaz O, Artmann AT, Cehreli R, Coker C. Effects of selenium supplementation on antioxidant defense and glucose homeostasis in experimental diabetes mellitus. Biol Trace Elem Res 2007; 118: 217–226
  • Hwang D, Seo S, Kim Y, Kim C, Shim S, Jee S, Lee S, Jang M, Kim M, Yim S, Lee SK, Kang B, Jang I, Cho J. Selenium acts as an insulin-like molecule for the down-regulation of diabetic symptoms via endoplasmic reticulum stress and insulin signalling proteins in diabetes-induced non-obese diabetic mice. J Biosci 2007; 32: 723–735
  • Aydemir-Koksoy A, Turan B. Selenium inhibits proliferation signaling and restores sodium/potassium pump function of diabetic rat aorta. Biol Trace Elem Res 2008; 126: 237–245
  • Mueller AS, Pallauf J, Rafael J. The chemical form of selenium affects insulinomimetic properties of the trace element: investigations in type II diabetic dbdb mice. J Nutr Biochem 2003; 14: 637–647
  • Ezaki O. The insulin-like effects of selenate in rat adipocytes. J Biol Chem 1990; 265: 1124–1128
  • Pillay TS, Makgoba MW. Enhancement of epidermal growth factor (EGF) and insulin-stimulated tyrosine phosphorylation of endogenous substrates by sodium selenate. FEBS Lett 1992; 308: 38–42
  • Stapleton SR, Garlock GL, Foellmi-Adams L, Kletzien RF. Selenium: potent stimulator of tyrosyl phosphorylation and activator of MAP kinase. Biochim Biophys Acta 1997; 1355: 259–269
  • Hei YJ, Farahbakhshian S, Chen X, Battell ML, McNeill JH. Stimulation of MAP kinase and S6 kinase by vanadium and selenium in rat adipocytes. Mol Cell Biochem 1998; 178: 367–375
  • Spallholz JE. Free radical generation by selenium compounds and their prooxidant toxicity. Biomed Environ Sci 1997; 10: 260–270
  • Chen JJ, Boylan LM, Wu CK, Spallholz JE. Oxidation of glutathione and superoxide generation by inorganic and organic selenium compounds. Biofactors 2007; 31: 55–66
  • Wang WC, Mäkelä AL, Näntö V, Mäkelä P, Lagström H. The serum selenium concentrations in children and young adults: a long-term study during the Finnish selenium fertilization programme. Eur J Clin Nutr 1998; 52: 529–535
  • Jackson MI, Combs GF, Jr. Selenium and anticarcinogenesis: underlying mechanisms. Curr Opin Clin Nutr Metab Care 2008; 11: 718–726
  • Gebre-Medhin M, Ewald U, Plantin LO, Tuvemo T. Elevated serum selenium in diabetic children. Acta Paediatr Scand 1984; 73: 109–114
  • Cser A, Sziklai-Làszlò I, Menzel H, Lombeck I. Selenium status and lipoproteins in healthy and diabetic children. J Trace Elem Electrolytes Health Dis 1993; 7: 205–210
  • Czernichow S, Couthouis A, Bertrais S, Vergnaud AC, Dauchet L, Galan P, Hercberg S. Antioxidant supplementation does not affect fasting plasma glucose in the Supplementation with Antioxidant Vitamins and Minerals (SU.VI.MAX) study in France: association with dietary intake and plasma concentrations. Am J Clin Nutr 2006; 84: 395–399
  • Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in U.S. adults. Diabetes Care 2007; 30: 829–834
  • Bleys J, Navas-Acien A, Stranges S, Menke A, Miller ER 3rd, Guallar E. Serum selenium and serum lipids in US adults. Am J Clin Nutr 2008; 88: 416–423
  • Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, Cappuccio FP, Ceriello A, Reid ME. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med 2007; 147: 217–223
  • Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, Parsons JK, Bearden JD, 3rd, Crawford ED, Goodman GE, Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber MM, Kristal AR, Darke AK, Arnold KB, Ganz PA, Santella RM, Albanes D, Taylor PR, Probstfield JL, Jagpal TJ, Crowley JJ, Meyskens FL, Jr, Baker LH, Coltman CA, Jr. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2009; 301: 39–51
  • Bolajoko EB, Mossanda KS, Adeniyi F, Akinosun O, Fasanmade A, Moropane M. Antioxidant and oxidative stress status in type 2 diabetes and diabetic foot ulcer. S Afr Med J 2008; 98: 614–617
  • Obeid O, Elfakhani M, Hlais S, Iskandar M, Batal M, Mouneimne Y, Adra N, Hwalla N. Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol Trace Elem Res. 2008; 123: 58–65
  • Ekmekcioglu C, Prohaska C, Pomazal K, Steffan I, Schernthaner G, Marktl W. Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biol Trace Elem Res 2001; 79: 205–219
  • Molnar J, Garamvolgyi Z, Herold M, Adanyi N, Somogyi A, Rigo J, Jr. Serum selenium concentrations correlate significantly with inflammatory biomarker high-sensitive CRP levels in Hungarian gestational diabetic and healthy pregnant women at mid-pregnancy. Biol Trace Elem Res 2008; 121: 16–22
  • Chen X, Scholl TO, Leskiw MJ, Donaldson MR, Stein TP. Association of glutathione peroxidase activity with insulin resistance and dietary fat intake during normal pregnancy. J Clin Endocrinol Metab 2003; 88: 5963–5968
  • Al-Saleh E, Nandakumaran M, Al-Rashdan I, Al-Harmi J, Al-Shammari M. Maternal-foetal status of copper, iron, molybdenum, selenium and zinc in obese gestational diabetic pregnancies. Acta Diabetol 2007; 44: 106–113
  • McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, Lei XG. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci USA 2004; 101: 8852–8857
  • Mueller AS, Bosse AC, Most E, Klomann SD, Schneider S, Pallauf J. Regulation of the insulin antagonistic protein tyrosine phosphatase 1B by dietary Se studied in growing rats. J Nutr Biochem 2009; 20: 235–247
  • Mueller AS, Klomann SD, Wolf NM, Schneider S, Schmidt R, Spielmann J, Stangl G, Eder K, Pallauf J. Redox regulation of protein tyrosine phosphatase 1B by manipulation of dietary selenium affects the triglyceride concentration in rat liver. J Nutr 2008; 138: 2328–2336
  • Dong F, Fang CX, Yang X, Zhang X, Lopez FL, Ren J. Cardiac overexpression of catalase rescues cardiac contractile dysfunction induced by insulin resistance: role of oxidative stress, protein carbonyl formation and insulin sensitivity. Diabetologia 2006; 49: 1421–1433
  • Schweizer U, Michaelis M, Koehrle J, Schomburg L. Efficient selenium transfer from mother to offspring in selenoprotein-P-deficient mice enables dose-dependent rescue of phenotypes associated with selenium deficiency. Biochem J 2004; 378: 21–26
  • Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong EG, Cho YR, Kim JK, Kahn BB, Neel BG, Bence KK. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 2009; 58: 590–599
  • Rondinone CM, Trevillyan JM, Clampit J, Gum RJ, Berg C, Kroeger P, Frost L, Zinker BA, Reilly R, Ulrich R, Butler M, Monia BP, Jirousek MR, Waring JF. Protein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis. Diabetes 2002; 51: 2405–2411
  • Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein tyrosine phosphatases in adipose tissue. Metabolism 1997; 46: 1140–1145
  • Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 1544–1548
  • Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Scarpe AH, Stricker-Krongard A, Shulman GI, Neel BG, Kahn BB. Increased energy expenditure decreased adiposity and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 2000; 20: 5479–5489
  • Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE, Waring JF, Xie N, Wilcox D, Jacobson P, Frost I, Kroeger PE, Reilly RM, Koterski S, Opgenorth TJ, Ulrich RG, Crosby S, Butler M, Murray SF, McKay R, Bhanot S, Monia BP, Jirousek MR. PTP1B antisense oligonucleotide lowers PTP1B protein normalizes blood glucose and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci USA 2002; 99: 11357–11362
  • Gum RJ, Gaede LL, Koterski SL, Heindel M, Clampit JE, Zinker BA, Trevilyan JM, Ulrich RG, Jirousek MR, Rondinone CM. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes 2003; 52: 21–28
  • Mohammad A, Wang J, McNeill JH. Bismaltolatooxovanadium IV inhibits the activity of PTP1B in Zucker rat skeletal muscle in vivo. Mol Cell Biochem 2000; 229: 125–128
  • Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C. Mechanism of inhibition of protein tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 1997; 272: 843–851
  • Koren S, Fantus IG. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract Res Clin Endocrinol Metab 2007; 21: 621–640
  • Denu JM, Tanner KG. Redox regulation of protein tyrosine phosphatases by hydrogen peroxide: detecting sulphenic acid intermediates and examining reversible inactivation. Methods Enzymol 2002; 348: 297–305
  • Salmeen A, Andersen JN, Myers MP, Meng TZ, Hinks JA, Tonks NK, Barford D. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 2003; 423: 769–773
  • Van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 2003; 423: 773–777
  • Rinna A, Torres M, Forman HJ. Stimulation of the alveolar macrophage respiratory burst by ADP causes selective glutathionylation of protein tyrosine phosphatase 1B. Free Radic Biol Med 2006; 41: 86–91
  • Denu JM, Dixon JE. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr Opin Chem Biol 1998; 2: 633–641
  • Townsend DM, Findlay VJ, Fazilev F, Ogle M, Fraser J, Saavedra JE, Ji X, Keefer LK, Tew KD. A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins. Mol Pharmacol 2006; 69: 501–508
  • Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD. Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress. J Biol Chem 2009; 284: 436–445
  • Barrett WC, DeGnore JP, Koenig S, Fales HM, Keng YF, Zhang ZY, Yim MB, Chock PB. Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 1999; 28: 6699–6705
  • Shi K, Egawa K, Maegawa H, Nakamura T, Ugi S, Nishio Y, Kashiwagi A. Protein-tyrosine phosphatase 1B associates with insulin receptor and negatively regulates insulin signaling without receptor internalization. J Biochem 2004; 136: 89–96
  • Mahadev K, Wu X, Zilbering A, Zhu L, Lawrence JT, Goldstein BJ. Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 2001; 276: 48662–48669
  • Mahadev K, Zilbering A, Zhu L, Goldstein BJ. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem 2001; 276: 21938–21942
  • Shimizu S, Ugi S, Maegawa H, Egawa K, Nishio Y, Yoshizaki T, Shi K, Nagai Y, Morino K, Nemoto K, Nakamura T, Bryer-Ash M, Kashiwagi A. Protein-tyrosine phosphatase 1B as new activator for hepatic lipogenesis via sterol regulatory element-binding protein-1 gene expression. J Biol Chem 2003; 278: 43095–43101
  • Shi K, Ugi S, Shimizu S, Sekine O, Ikeda K, Egawa K, Yoshizaki T, Nagaio, Nishio Y, Takada T, Torii R, Kimura H, Kashiwagi A, Maegawa H. Membrane localization of protein-tyrosine phosphatase 1B is essential for its activation of sterol regulatory element-binding protein-1 gene expression. Biochem Biophys Res Commun 2007; 363: 626–632Y
  • Ferré P, Foufelle F. SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res 2007; 68: 72–82
  • Sanderson SO, Smyrk TC. The use of protein tyrosine phosphatase 1B and insulin receptor immunostains to differentiate nonalcoholic from alcoholic steatohepatitis in liver biopsy specimens. Am J Clin Pathol 2005; 123: 503–509
  • Robertson RP, Harmon JS. Pancreatic islet beta-cell and oxidative stress: the importance of glutathione peroxidase. FEBS Lett 2007; 581: 3743–3748
  • Christensen MJ, Nelson BL, Wray CD. Regulation of glutathione-S-transferases gene expression and activity by dietary selenium. Biochem Biophys Res Commun 1994; 202: 271–277
  • McLeod R, Ellis EM, Arthur JR, Neal GE, Judah DJ, Manson MM, Hayes JD. Protection conferred by selenium deficiency against aflatoxin B1 in the rat is associated with the hepatic expression of an aldo-keto reductase and a glutathione-S-transferase subunit that metabolize the mycotoxin. Cancer Res 1997; 57: 4257–4266
  • Olsson U, Lundgren B, Segura-Aguilar J, Messing-Eriksson A, Andersson K, Becedas L, De Pierre JW. Effects of selenium deficiency on xenobiotic-metabolizing and other enzymes in rat liver. Int J Vitam Nutr Res 1993; 63: 31–37
  • Mostert V, Hill KE, Ferris CD, Burk RF. Selective induction of liver parenchymal cell heme oxygenase-1 in selenium-deficient rats. Biol Chem 2003; 384: 681–687
  • Trigona WL, Mullarky IK, Cao Y, Sordillo LM. Thioredoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells. Biochem J 2006; 394: 207–216
  • Sengupta A, Carlson BA, Weaver JA, Novoselov SV, Fomenko DE, Gladyshev VN, Hatfield DL. A functional link between housekeeping selenoproteins and phase II enzymes. Biochem J 2008; 413: 151–161
  • Hossaini AM, Zamrroni IM, Kashem RA, Khan ZF. Polymorphism of glutathione S-transferases as genetic risk factors for the development of complications in type 2 diabetes mellitus. J Crit Care 2008; 23: 444–448
  • Kim SK, Abdelmegeed MA, Novak RF. Identification of the insulin signaling cascade in the regulation of alpha-class glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther 2006; 316: 1255–1261
  • Ndisang, JF, Lane, N, Jadhav, A. Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycaemia in type-2 diabetes. Am J Physiol Endocrinol Metab 2009, Feb 10. [Epub ahead of print]
  • Ndisang, JF, Jadhav, A. Upregulating the heme oxygenase system enhances insulin sensitivity and improves glucose metabolism in insulin-resistant diabetes in rats. Endocrinology. 2009, Feb 19. [Epub ahead of print]
  • Ndisang JF, Jadhav A. Heme oxygenase system enhances insulin sensitivity and glucose metabolism in streptozotocin-induced diabetes. Am J Physiol Endocrinol Metab 2009; 296: E829–E841
  • Nicolai A, Li M, Kim DH, Peterson SJ, Vanella L, Positano V, Gastaldelli A, Rezzani R, Rodella LF, Drummond G, Kusmic C, L'Abbate A, Kappas A, Abraham NG. Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats. Hypertension 2009; 53: 508–515
  • Ohtoshi K, Kaneto H, Node K, Nakamura Y, Shiraiwa T, Matsuhisa M, Yamasaki Y. Association of soluble epoxide hydrolase gene polymorphism with insulin resistance in type 2 diabetic patients. Biochem Biophys Res Commun 2005; 331: 347–350
  • Tamai M, Furuta H, Kawashima H, Doi A, Hamanishi T, Shimomura H, Sakagashira S, Nishi M, Sasaki H, Sanke T, Nanjo K. Extracellular superoxide dismutase gene polymorphism is associated with insulin resistance and the susceptibility to type 2 diabetes. Diabetes Res Clin Pract 2006; 71: 140–145
  • Sentman ML, Jonsson LM, Marklund SL. Enhanced alloxan-induced beta-cell damage and delayed recovery from hyperglycemia in mice lacking extracellular-superoxide dismutase. Free Radic Biol Med 1999; 27: 790–796
  • Dasgupta J, Subbaram S, Connor KM, Rodriguez AM, Tirosh O, Beckman JS, Jourd'Heuil D, Melendez JA. Manganese superoxide dismutase protects from TNF-alpha-induced apoptosis by increasing the steady-state production of H2O2. Antioxid Redox Signal 2006; 8: 1295–1305
  • Fischer LJ, Hamburger SA. Inhibition of alloxan action in isolated pancreatic islets by superoxide dismutase, catalase, and a metal chelator. Diabetes 1980; 29: 213–216
  • Anuradha CV. Aminoacid support in the prevention of diabetes and diabetic complications. Curr Protein Pept Sci 2009; 10: 8–17
  • El Midaoui A, Ismael MA, Lu H, Fantus IG, de Champlain J, Couture R. Comparative effects of N-acetyl-L-cysteine and ramipril on arterial hypertension, insulin resistance, and oxidative stress in chronically glucose-fed rats. Can J Physiol Pharmacol 2008; 86: 752–760
  • McMaster D, Bell N, Anderson P, Love AH. Automated measurement of two indicators of human selenium status, and applicability to population studies. Clin Chem 1990; 36: 211–216
  • Thomson CD, Rea HM, Doesburg VM, Robinson MF. Selenium concentrations and glutathione peroxidase activities in whole blood of New Zealand residents. Br J Nutr 1977; 37: 457–460
  • Lee MS, Kim CH, Hoang DM, Kim BY, Sohn CB, Kim MR, Ahn JS. Genistein-derivatives from Tetracera scandens stimulate glucose-uptake in L6 myotubes. Biol Pharm Bull 2009; 32: 504–508
  • Zhang, M, Ikeda, K, Xu, JW, Yamori, Y, Gao, XM, Zhang, BL. Genistein suppresses adipogenesis of 3T3-L1 cells via multiple signal pathways. Phytother Res. 2008, Dec 23. [Epub ahead of print]
  • Choi MS, Jung UJ, Yeo J, Kim MJ, Lee MK. Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice. Diabetes Metab Res Rev 2008; 24: 74–81
  • Lee JS. Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci 2006; 79: 1578–1584
  • Yadav SP, Vats V, Ammini AC, Grover JK. Brassica juncea (Rai) significantly prevented the development of insulin resistance in rats fed fructose-enriched diet. J Ethnopharmacol 2004; 93: 113–116
  • Anand, P, Murali, YK, Tandon, V, Murthy, PS, Chandra, R. Insulinotropic effect of aqueous extract of brassica nigra improves glucose homeostasis in streptozotocin induced diabetic rats. Exp Clin Endocrinol Diabetes 2008, Aug 25. [Epub ahead of print]
  • Taniguchi H, Kobayashi-Hattori K, Tenmyo C, Kamei T, Uda Y, Sugita-Konishi Y, Oishi Y, Takita T. Effect of Japanese radish (Raphanus sativus) sprout (Kaiware-daikon) on carbohydrate and lipid metabolisms in normal and streptozotocin-induced diabetic rats. Phytother Res 2006; 20: 274–278
  • Mann GE, Bonacasa B, Ishii T, Siow RC. Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. Curr Opin Pharmacol 2009; 9: 139–145
  • Hernandez-Montes E, Pollard SE, Vauzour D, Jofre-Montseny L, Rota C, Rimbach G, Weinberg PD, Spencer JP. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury. Biochem Biophys Res Commun 2006; 346: 851–859
  • Xue M, Qian Q, Adaikalakoteswari A, Rabbani N, Babaei-Jadidi R, Thornalley PJ. Activation of NF-E2-related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease. Diabetes 2008; 57: 2809–2817
  • Prawan A, Keum YS, Khor TO, Yu S, Nair S, Li W, Hu L, Kong AN. Structural influence of isothiocyanates on the antioxidant response element (ARE)-mediated heme oxygenase-1 (HO-1) expression. Pharm Res 2008; 25: 836–844
  • Mahan DC, Peters JC. Long-term effects of dietary organic and inorganic selenium sources and levels on reproducing sows and their progeny. J Anim Sci 2004; 82: 1343–1358
  • Reid ME, Duffield-Lillico AJ, Slate E, Natarajan N, Turnbull B, Jacobs E, Combs GF, Jr, Alberts DS, Clark LC, Marshall JR. The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutr Cancer 2008; 60: 155–163
  • Wu Y, Zu K, Warren MA, Wallace PK, Ip C. Delineating the mechanism by which selenium deactivates Akt in prostate cancer cells. Mol. Cancer Ther 2006; 5: 246–252
  • Xiang N, Zhao R, Song G, Zhong W. Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis 2008; 29: 2175–2181
  • Cooper ML, Adami HO, Grönberg H, Wiklund F, Green FR, Rayman MP. Interaction between single nucleotide polymorphisms in selenoprotein P and mitochondrial superoxide dismutase determines prostate cancer risk. Cancer Res 2008; 68: 10171–10177
  • Méplan, C, Nicol, F, Burtle, B, Crosley, L, Arthur, J, Mathers, J, Hesketh, J. Relative abundance of selenoprotein P isoforms in human plasma depends on genotype, Se intake, and cancer status. Antioxid Redox Signal 2009, May 19. [Epub ahead of print8]
  • Banning A, Florian S, Deubel S, Thalmann S, Müller-Schmehl K, Jacobasch G, Brigelius-Flohé R. GPx2 counteracts PGE2 production by dampening COX-2 and mPGES-1 expression in human colon cancer cells. Antioxid Redox Signal 2008; 10: 1491–1500
  • Schueller P, Puettmann S, Micke O, Senner V, Schaefer U, Willich N. Selenium influences the radiation sensitivity of C6 rat glioma cells. Anticancer Res 2004; 24: 2913–2917
  • Micke O, Mücke R, Bruns F, Kisters K, Büntzel J. Some clinical results on selenium in radiation oncology: letter by O, Micke R, Mücke F, Bruns K, Kisters J, Büntzel on W. Dörr: Effects of selenium on radiation responses of tumor cells and tissue in: Strahlenther Onkol 2006;182:693–695 (No. 12) (DOI 10.1007/s00066-006-1595-8). Strahlenther Onkol 2007; 183: 344–345

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.