448
Views
113
CrossRef citations to date
0
Altmetric
Original

Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles

, , , , , , , & show all
Pages 1133-1145 | Received 20 May 2009, Published online: 08 Oct 2009

References

  • Walsh DM, Selkoe DJ. A beta oligomers—a decade of discovery. J Neurochem 2007; 101: 1172–1184
  • Walsh DM, Selkoe DJ. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 2004; 11: 213–228
  • Pitschke M, Prior R, Haupt M, Riesner D. Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer's patients by fluorescence correlation spectroscopy. Nat Med 1998; 4: 832–834
  • Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL. Alzheimer's disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 2003; 100: 10417–10422
  • Reddy PH. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer's disease. J Neurochem 2006; 96: 1–13
  • KangDagger SW, ChaeDagger HZ, SeoDagger M, KimDagger par K, BainesDagger IC, Goo Rhee S. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 1998; 273: 6297–6302
  • Butterfield DA. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. Free Radic Res 2002; 361: 307–313
  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997; 82: 291–295
  • Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78: 547–581
  • Subramaniam R, Koppal T, Green M, Yatin S, Jordan B, Drake J, Butterfield DA. The free radical antioxidant vitamin E protects cortical synaptosomal membranes from amyloid beta-peptide (25–35) toxicity but not from hydroxynonenal toxicity: relevance to the free radical hypothesis of Alzheimer's disease. Neurochem Res 1998; 23: 1403–1410
  • Goodman Y, Steiner MR, Steiner SM, Mattson MP. Nordihydroguaiaretic acid protects hippocampal neurons against amyloid beta-peptide toxicity, and attenuates free radical and calcium accumulation. Brain Res 1994; 654: 171–176
  • Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, Maeda T, Akaike A. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 1997; 42: 159–163
  • Graf E. Antioxidant potential of ferulic acid. Free Radic Biol Med 1992; 13: 435–448
  • Scott BC, Butler J, Halliwell B, Aruoma OI. Evaluation of the antioxidant actions of ferulic acid and catechins. Free Radic Res Commun 1993; 19: 241–253
  • Fernandez MA, Saenz MT, Garcia MD. Anti-inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens. J Pharm Pharmacol 1998; 50: 1183–1186
  • Ozaki Y. Antiinflammatory effect of tetramethylpyrazine and ferulic acid. Chem Pharm Bull 1992; 40: 954–956
  • Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H. Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 2002; 50: 2161–2168
  • Kanski J, Aksenova M, Stoyanova A, Butterfield DA. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 2002; 13: 273–281
  • Ogiwara T, Satoh K, Kadoma Y, Muratami Y, Unten S, Atsumi T, Sakagami H, Fujisawa S. Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res 2002; 22: 2711–2717
  • Yan JJ, Cho JY, Kim HS, Kim KL, Jung JS, Huh SO, Suh HW, Kim YH, Song DK. Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 2000; 133: 89–96
  • Ono K, Yamada M. Ferulic acid destabilizes preformed beta-amyloid fibrils in vitro. Biochem Biophys Res Commun 2005; 336: 444–449
  • Reddy JS, Venkateswarlu V. Novel delivery systems for drug targeting to the brain. Drugs of the Future 2004; 29: 63–83
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Del Rev 2001; 47: 65–81
  • Wang J, Sun X, Zhang Z. Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm 2002; 54: 285–290
  • Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Del Rev 2004; 56: 1257–1272
  • Tamai I, Tsuji A. Drug delivery through the blood–brain barrier. Adv Drug Del Rev 1996; 19: 401–424
  • Yang SC, Lu FL, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Contr Rel 1999; 59: 299–307
  • Carrotta R, Manno M, Bulone D, Martorana V, San Biagio PL. Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. J Biol Chem 2005; 280: 30001
  • Carrotta R, Barthès J, Longo A, Martorana V, Manno M, Portale G, San Biagio PL. Large size fibrillar bundles of the Alzheimer amyloid beta-protein. Eur Byophys J 2007; 36: 701–709
  • Carrotta R, Di Carlo M, Manno M, Montana G, Picone P, Romancino D, San Biagio PL. Toxicity of recombinant beta-amyloid prefibrillar oligomers on the morphogenesis of the sea urchin Paracentrotus lividus. FASEB J 2006; 20: 1916–1927
  • Picone P, Carrotta R, Montana G, Nobile MR, San Biagio PL, Di Carlo M. Ab oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures. Biophys J 2009; 96: 4200–4211
  • Chang TS, Cho CS, Park S., Yu S, Kang SW, Rhee SG. Peroxiredoxin III, a mitochondrion-specific peroxidase regulates apoptotic signaling by mitochondria. J Biol Chem 2004; 279: 41975–41984
  • Cumming RC, Dargusch R, Fischer WH, Schubert D. Increase in expression levels and resistance to sulfhydryl oxidation of peroxiredoxin isoforms in amyloid beta-resistant nerve cells. J Biol Chem 2007; 282: 30523–30534
  • Chong YH, Shin YJ, Lee EO, Kayed R, Glabe CG, Tenner AJ. ERK1/2 activation mediates Abeta oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. J Biol Chem 2006; 281: 20315–20325
  • Zhuang S, Schnellmann RG. A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther 2006; 1: 991–997
  • Ramachandiran S, Huang Q, Dong J, Lau SS, Monks TJ. Mitogen-activated protein kinases contribute to reactive oxygen species-induced cell death in renal proximal tubule epithelial cells. Chem Res Toxicol 2002; 15: 1635–1642
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 297: 353–356
  • Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 2003; 161: 41–54
  • Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J 2005; 19: 2040–2041
  • Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, Barnham KJ, Curtain CC, Cherny RA, Cappai R, Dyrks T, Masters CL, Trounce IA. Copper-dependent inhibition of human cytochrome C oxidase by a dimeric conformer of amyloid-beta1-42. J Neurosci 2005; 25: 672–679
  • Wang X, Su B, Perry G, Smith MA, Zhu X. Insights into amyloid-(-induced mitochondrial dysfunction in Alzheimer disease. Free Radic Biol Med 2007; 43: 1569–1573
  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of Abeta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 2006; 15: 1437–1449
  • Lim SJ, Kim CK. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm 2002; 243: 135–146
  • Ugazio E, Cavalli R, Gasco MR. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int J Pharm 2002; 241: 341–344
  • Bondì ML, Craparo EF, Giammona G, Cervello M, Azzolina A, Diana P, Martorana A, Cirrincione G. Nanostructured lipid carriers-containing anticancer compounds: preparation, characterization, and cytotoxicity studies. Drug Del 2007; 14: 61–67
  • Bondì, ML, Craparo, EF, Giammona, G, Drago, F. Nanoparticulate lipid carriers containing riluzole and pharmaceutical compositions containing said particles. Patent number: WO2008/000448 A2.
  • Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007; 28: 4947–4967
  • Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 1994; 91: 3270–3274
  • Praticò D, Uryu K, Leight S, Trojanoswki JQ, Lee VM. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001; 21: 4183–4187
  • Bush AI, Atwood CS, Goldstein LE, Huang X, Rogers J. Could Abeta and AbetaPP be antioxidants?. J Alzheimer Dis 2000; 2: 83–84
  • Sheu SS, Nauduri D, Anders MW. Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 2006; 1762: 256–265
  • Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 2004; 304: 448–452
  • Nomura K, Imai H, Koumura T, Arai M, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J Biol Chem 1999; 274: 29294–29302
  • Münch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ, Vlassara H, Smith MA, Perry G, Riederer P. Alzheimer's diseases-synergistic effects of glucose deficit. Oxidative stress and advanced glycation endproducts. J Neural Transm 1998; 105: 439–461
  • Brown GC, Nicholls DG, Cooper CE. Mitochondria and cell death. Princeton University Press, Princeton, NJ 1999
  • Weissig V, Cheng SM, D'Souza G. Mitochondrial pharmaceutics. Mitochondrion 2004; 3: 229–244
  • Weissig V, Torchilin VP. Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy. Curr Pharm Biotechnol 2000; 1: 325–346
  • Horobin RW, Trapp S, Weissig V. Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Contr Rel 2007; 121: 125–136
  • Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA 2003; 100: 5407–5412
  • Cox AG, Pullar JM, Hughes G, Ledgerwood EC, Hampton MB. Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis. Free Radic Biol Med 2008; 44: 1001–1009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.