178
Views
5
CrossRef citations to date
0
Altmetric
Original Article

On the complex OH/O-induced free radical chemistry of arylalkylamines with special emphasis on the contribution of the alkylamine side chain

ORCID Icon, , , , , & show all
Pages 124-140 | Received 06 Oct 2016, Accepted 23 Jan 2017, Published online: 20 Feb 2017

References

  • Zhou H, Lu P, Gu X, Zhou H, Lu P, Gu X, Li P. Visible-light mediated nucleophilic addition of an α-aminoalkyl radical to isocyanate or isothiocyanate. Org Lett 2013;15:5646–5649.
  • Nakajima K, Kitagawa M, Ashida Y, Miyake Y, Nishibayashi Y. Synthesis of nitrogen heterocycles via α-aminoalkyl radicals generated from α-silyl secondary amines under visible light irradiation. Chem Commun (Camb) 2014;50:8900–8903.
  • Minozzi M, Nanni D, Spagnolo P. From azides to nitrogen-centered radicals: applications of azide radical chemistry to organic synthesis. Chemistry 2009;15:7830–7840.
  • Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem Rev 2004;104:3947–3980.
  • Dunn RV, Munro AW, Turner NJ, Rigby SEJ, Scrutton NS. Tyrosyl radical formation and propagation in flavin dependent monoamine oxidases. ChemBioChem 2010;11:1228–1231.
  • Davies MJ. Oxidative damage to proteins. In: Chatgilialoglu C, Studer A, eds. Encyclopedia of radicals in chemistry, biology and materials. New York: Wiley; 2012:1425–1458.
  • Chatgilialoglu C, D’Angelantonio M, Kciuk G, Bobrowski K. New insights into the reaction paths of hydroxyl radicals with 2'-deoxyguanosine. Chem Res Toxicol 2011;24:2200–2206.
  • Chen Y, Hu C, Hu X, Qu J. Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight. Environ Sci Technol 2009;43:2760–2765.
  • Zhang H, Huang CH. Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide. Environ Sci Technol 2005;39:4474–4483.
  • Wang KL, Xu LJ. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 2012;42:251–325.
  • Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 2009;35:803–814.
  • Wigger A, Grünbein W, Henglein A, Land EJ. Pulsradiolytische Untersuchung primärer Schritte der Oxidation von Aminen in wäβriger Lösung [Pulsradiolytic investigation of the primary steps in the oxidation of amines in aqueous solution]. Z Naturforsch B 1969;24:1262–1267.
  • Simic M, Neta P, Hayon E. Pulse radiolytic investigation of aliphatic amines in aqueous solution. Int J Radiat Phys Chem 1971;3:309–320.
  • Neta P, Fessenden RW. Electron spin resonance study of radicals produced in irradiated aqueous solutions of amines and amino acids. J Phys Chem 1971;6:738–741.
  • Fessenden RW, Neta P. Electron spin resonance spectra of di- and trimethylaminium radicals. J Phys Chem 1972;76:2857–2859.
  • Getoff N, Schwörer F. Pulse radiolysis of ethyl, n-propyl, n-butyl and n-amyl amine in aqueous solutions. Int J Radiat Phys Chem 1973;5:101–111.
  • Bobrowski K. Pulse radiolysis studies concerning the reactions of hydrogen abstraction from tetraalkylammonium cations. J Phys Chem 1980;84:3524–3529.
  • Das S, von Sonntag C. The oxidation of trimethylamine by OH radicals in aqueous solution, as studied by pulse radiolysis, ESR, and product analysis. The reactions of the alkylamine radical cation, the aminoalkyl radical, and the protonated aminoalkyl radical. Z Naturforsch B 1986;41:505–513.
  • Das S, Schuchmann MN, Schuchmann HP, von Sonntag C. The production of the superoxide radical anion by the OH radical-induced oxidation of trimethylamine in oxygenated aqueous solution. The kinetics of the hydrolysis of (hydroxymethyl)dimethylamine. Chem Ber 1987;120:319–323.
  • Bonifacic M, Armstrong DA, Stefanic I, Asmus KD. Kinetic isotope effect for hydrogen abstraction by •OH radicals from normal and carbon-deuterated ethyl alcohol and methylamine in aqueous solutions. J Phys Chem B 2003;107:7268–7276.
  • Armstrong DA, Asmus KD, Bonifacic M. Oxide radical anion reactivity with aliphatic amino compounds in aqueous solution: comparison of H-atom abstraction from C-H and N-H groups by •O− and •OH radicals. J Phys Chem A 2004;108:2238–2246.
  • Mittal LK, Mittal JP. Site of attack in the interaction of hydrated electrons and hydroxyl radicals in the pulse radiolysis of arylalkylamines in aqueous solutions. Radiat Phys Chem 1986;28:363–371.
  • Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution. J Phys Chem Ref Data 1988;17:513–886.
  • Butler SG, Meegan MJ. Recent developments in the design of anti-depressive therapies: targeting the serotonin transporter. Curr Med Chem 2008;15:1737–1761.
  • Silva LJG, Pereira AMPT, Meisel LM, Lino CM, Pina A. Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: uptake, bioaccumulation and ecotoxicology. Environ Pollut 2015;197:127–143.
  • Földiák G, Hargittai P, Kaszanyiczki L, Wojnárovits L. A computer controlled pulse radiolysis laboratory. J Radioanal Nucl Chem Artic 1988;125:19–28.
  • Takács E, Wojnárovits L, Dajka K. Kinetics of the early stages of high-energy radiation initiated polymerization. Macromol Chem Phys 2000;201:2170–2175.
  • Buxton GV, Stuart CR. Re-evaluation of the thiocyanate dosimeter for pulse radiolysis. Faraday Trans 1995;91:279–281.
  • Belloni J, eds. Radiation chemistry: from basics to applications in material and life sciences. Paris: EDP Sciences; 2008:3–16.
  • Janata E, Schuler RH. Rate constant for scavenging eaq− in N2O-saturated solutions. J Phys Chem 1982;86:2078–2084.
  • Pimblott SM, LaVerne JA. Cooperative effects of scavengers on the scavenged yield of the hydrated electron. J Phys Chem 1992;96:8904–8909.
  • Marciniak B, Bobrowski K, Hug GL. Quenching of triplet states of aromatic ketones by sulfur-containing amino acids in solution. Evidence for electron transfer. J Phys Chem 1993;97:11937–11943.
  • de Levie R. Advanced excel® for scientific data analysis. New York: Oxford University Press; 2004.
  • Wardman P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 1989;18:1637–1755.
  • Turinger PA. On the absorbancy of reduced methyl viologen. Anal Biochem 1970;36:222–251.
  • Scott LS, Chen WJ, Bakac A, Espenson JH. Spectroscopic parameters, electrode potentials, acid ionization constants, and electron exchange rates of the 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonate) radicals and ions. J Phys Chem 1993;97:6710–6714.
  • Wolfenden BS, Willson RL. Radical-cations as reference chromogens in kinetic studies of one-electron transfer reactions: pulse radiolysis studies of 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J Chem Soc Perkin Trans II 1982;805–812.
  • Ilan YA, Czapski G, Meisel D. The one-electron transfer redox potentials of free radicals. I. The oxygen/superoxide system. Biochim Biophys Acta 1976;430:209–224.
  • Veltwisch D, Asmus KD. On the reaction of methyl and phenyl radicals with p-benzoquinone in aqueous solution. J Chem Soc Perkin Trans II 1982;1147–1152.
  • Bard AJ, Parsons R, Jordan J, eds. Standard potentials in aqueous solution. New York: CRC Press; 1985.
  • Madhavan V, Schuler R. A radiation chemical study of the oxidation of hydroxycyclohexadienyl radical by ferricyanide. Radiat Phys Chem 1980;16:139–143.
  • Anderson RF. Oxidation of the cyclohexadienyl radical by metal ions: a pulse radiolysis study. Radiat Phys Chem 1979;13:155–157.
  • Merga G, Schuchmann HP, Rao BSM, von Sonntag C. Oxidation of benzyl radicals by Fe(CN)63−. J Chem Soc Perkin Trans II 1996;551–556.
  • Stefanic I, Bonifacic M, Asmus KD, Armstrong DA. Absolute rate constants and yields of transients from hydroxyl radical and H atom attack on glycine and methyl-substituted glycine anions. J Phys Chem A 2001;105:8681–8690.
  • Steenken S, Neta P. Oxidation of substituted alkyl radicals by IrCl62−, Fe(CN)63−, and MnO4− in aqueous solution. Electron transfer versus chlorine transfer from IrCl62−. J Am Chem Soc 1982;104:1244–1248.
  • Schuler RH, Hartzell AL, Behar B. Track effects in radiation chemistry. Concentration dependence for the scavenging of OH by ferrocyanide in N2O-saturated aqueous solutions. J Phys Chem 1981;85:192–199.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Fox, Gaussian 09, Revision A.02. Wallingford (CT): Gaussian Inc.; 2009.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993;98:5648–5652.
  • Bergès J, Varmenot N, Scemama A, Abedinzadeh Z, Bobrowski K. Energies, stability and structure properties of radicals derived from organic sulfides containing an acetyl group after the •OH attack: ab initio and DFT calculations vs experiment. J Phys Chem A 2008;112:7015–7026.
  • Kosno K, Janik I, Celuch M, Mirkowski J, Kisala J, Pogocki D. The role of pH in the mechanism of •OH radical induced oxidation of nicotine. Isr J Chem 2014;54:302–315.
  • McLean AD, Chandler GS. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18. J Chem Phys 1980;72:5639–5648.
  • Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 1980;72:650–654.
  • Clark T, Chandresakhar J, Spitznagel GW, Schleyer PR. Efficient diffuse function-augmented basis-sets for anion calculations. 3. The 3-21 + G basis set for 1st-row elements, Li-F. J Comput Chem 1983;4:294–301.
  • Frisch MJ, Pople JA, Binkley JS. Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J Chem Phys 1984;80:3265–3269.
  • Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 2009;113:6378–6396.
  • Armstrong DA, Yu D, Rauk A. Oxidative damage to the glycyl α-carbon site in proteins: ab initio study of the C-H bond dissociation energy and the reduction potential of the C-centered radical. Can J Chem 1996;74:1192–1199.
  • Elford PE, Roberts BP. Hydrogen-atom abstraction from dimethylamine in solution: EPR spectroscopic and ab initio molecular orbital calculations. J Chem Soc Perkin Trans II 1998;1413–1421.
  • Casida ME, Jamorski C, Casida KC, Salahub DR. Molecular excitation energies to high-lying bound states from time dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 1998;108:4439–4449.
  • Bobrowski K, Hug GL, Pogocki D, Marciniak B, Schöneich C. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues. J Phys Chem B 2007;111:9608–9620.
  • Bobrowski K, Hug GL, Pogocki D, Marciniak B, Schöneich C. Sulfur radical cation-peptide bond complex in the one-electron oxidation of S-methylglutathione. J Am Chem Soc 2007;129:9236–9245.
  • Wisniowski PB, Hug GL, Pogocki D, Bobrowski K. Efficient α-(alkylthio)alkyl-type radical formation in •OH-induced oxidation of α-(methylthio)acetamide. J Phys Chem A 2010;114:105–116.
  • Sehested K, Corfitzen H, Christensen C, Hart EJ. Rates of reaction of •O−, •OH, and •H with methylated benzenes in aqueous solution. Optical spectra of radicals. J Phys Chem 1975;79:310–315.
  • Armstrong DA, Rauk A, Yu D. Aminoalkyl and alkylaminium free radicals and related species: structures, thermodynamic properties, reduction potentials, and aqueous free energies. J Am Chem Soc 1993;115:666–673.
  • Garrido EM, Garrido J, Calheiros R, Marques MPM, Borges F. Fluoxetine and norfluoxetine revisited: new insights into the electrochemical and spectroscopic properties. J Phys Chem A 2009;113:9934–9944.
  • Berkowitz J, Ellison GB, Gutman D. Three methods to measure RH bond energies. J Phys Chem 1994;98:2744–2765.
  • Viehe HG, Janousek Z, Merényi R, eds. Substituent effect in radical chemistry. Dordrecht: D. Reidel Publishing Company; 1986.
  • Lalevée J, Allonas X, Fouassier JP. N-H and alpha(C-H) bond dissociation enthalpies of aliphatic amines. J Am Chem Soc 2002;124:9613–9621.
  • Christensen HC, Sehested K, Hart EJ. Formation of benzyl radicals by pulse radiolysis of toluene in aqueous solutions. J Phys Chem 1973;77:983–987.
  • Foti MC, Daquino C, Mackie ID, DiLabio GA, Ingold KU. Reaction of phenols with 2,2-diphenyl-1-picrylhydrazyl radical. Kinetic and DFT calculations applied to determine ArO-H bond dissociation enthalpies and reaction mechanism. J Org Chem 2008;73:9270–9282.
  • Roberts BP, Steel AJ. An extended form of the Evans-Polanyi equation: a simple empirical relationship for the prediction of activation energies for hydrogen-atom transfer reactions. J Chem Soc Perkin Trans II 1994;2155–2162.
  • von Sonntag C. Free-radical-induced DNA damage and its repair. A chemical perspective. Heidelberg: Springer-Verlag; 2006.
  • Cercek B. Substituent effects in cyclohexadienyl radicals as studied by pulse radiolysis. J Phys Chem 1968;72:3832–3836.
  • Papas ES, Chaldezos CN, Atta-Politou J, Koupparis MA. Construction of a fluoxetine ion chemical sensor and its application for the determination of pKa value of fluoxetine conjugated acid, complexation study with β-cyclodextrin and formulations assay. Anal Lett 2010;43:2171–2183.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.