380
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Molecular hydrogen upregulates heat shock response and collagen biosynthesis, and downregulates cell cycles: meta-analyses of gene expression profiles

, , , , &
Pages 434-445 | Received 06 Nov 2017, Accepted 06 Feb 2018, Published online: 20 Mar 2018

References

  • Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13(6):688–694.
  • Ohno K, Ito M, Ichihara M, et al. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid Med Cell Longev. 2012;2012:353152.
  • Ichihara M, Sobue S, Ito M, et al. Beneficial biological effects and the underlying mechanisms of molecular hydrogen – comprehensive review of 321 original articles. Med Gas Res. 2015;5:12.
  • Kajiyama S, Hasegawa G, Asano M, et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 2008;28(3):137–143.
  • Ito M, Ibi T, Sahashi K, et al. Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies. Med Gas Res. 2011;1(1):24.
  • Ishibashi T, Sato B, Rikitake M, et al. Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study. Med Gas Res. 2012;2(1):27.
  • Song G, Lin Q, Zhao H, et al. Hydrogen activates ATP-binding cassette transporter a1-dependent efflux ex vivo and improves high-density lipoprotein function in patients with hypercholesterolemia: a double-blinded, randomized, and placebo-controlled trial. J Clin Endocrinol Metab. 2015;100(7):2724–2733.
  • Yoritaka A, Takanashi M, Hirayama M, et al. Pilot study of H2 therapy in Parkinson’s disease: a randomized double-blind placebo-controlled trial. Mov Disord. 2013;28(6):836–839.
  • Ohta S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim Biophys Acta. 2012;1820(5):586–594.
  • Itoh T, Fujita Y, Ito M, et al. Molecular hydrogen suppresses FcepsilonRI-mediated signal transduction and prevents degranulation of mast cells. Biochem Biophys Res Commun. 2009;389(4):651–656.
  • Itoh T, Hamada N, Terazawa R, et al. Molecular hydrogen inhibits lipopolysaccharide/interferon gamma-induced nitric oxide production through modulation of signal transduction in macrophages. Biochem Biophys Res Commun. 2011;411(1):143–149.
  • Lin Y, Ohkawara B, Ito M, et al. Molecular hydrogen suppresses activated Wnt/β-catenin signaling. Sci Rep. 2016;6:31986.
  • Iuchi K, Imoto A, Kamimura N, et al. Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci Rep. 2016;6:18971.
  • Kamimura N, Ichimiya H, Iuchi K, et al. Molecular hydrogen stimulates the gene expression of transcriptional coactivator PGC-1α to enhance fatty acid metabolism. Npj Aging Mech Dis. 2016;2:16008.
  • Sobue S, Inoue C, Hori F, et al. Biochemical and Biophysical Research Communications Molecular hydrogen modulates gene expression via histone modification and induces the mitochondrial unfolded protein response. Biochem Biophys Res Commun. 2017:493(1): 318–324.
  • Nakai Y, Sato B, Ushiama S, et al. Hepatic oxidoreduction-related genes are upregulated by administration of hydrogen-saturated drinking water. Biosci Biotechnol Biochem. 2011;75(4):774–776.
  • Hasegawa S, Ito M, Fukami M, et al. Molecular hydrogen alleviates motor deficits and muscle degeneration in mdx mice. Redox Rep. 2017;22(1):26–34.
  • Fujita K, Seike T, Yutsudo N, et al. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS ONE. 2009;4(9):e7247.
  • Sobue S, Yamai K, Ito M, et al. Simultaneous oral and inhalational intake of molecular hydrogen additively suppresses signaling pathways in rodents. Mol Cell Biochem. 2015;403(1–2):231–241.
  • Kamimura N, Nishimaki K, Ohsawa I, et al. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity (Silver Spring). 2011;19(7):1396–1403.
  • Fabregat A, Sidiropoulos K, Garapati P, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2016;44(D1):D481–DD487.
  • Walsh CJ, Hu P, Batt J, et al. Microarray meta-analysis and cross-platform normalization: integrative genomics for robust biomarker discovery. Microarrays. 2015;4(3):389–406.
  • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–127.
  • Shabalin AA, Tjelmeland H, Fan C, et al. Merging two gene-expression studies via cross-platform normalization. Bioinformatics. 2008;24(9):1154–1160.
  • Benito M, Parker J, Du Q, et al. Adjustment of systematic microarray data biases. Bioinformatics. 2004;20(1):105–114.
  • Taminau J, Meganck S, Lazar C, et al. Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages. BMC Bioinformatics. 2012;13:335.
  • Chang LC, Lin HM, Sibille E, et al. Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline. BMC Bioinformatics. 2013;14:368.
  • Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol. 2012;8(2):e1002375.
  • Jin L, Zuo XY, Su WY, et al. Pathway-based analysis tools for complex diseases: a review. Genomics Proteom Bioinformatics. 2014;12(5):210–220.
  • Khatri P, Draghici S, Ostermeier GC, et al. Profiling gene expression using onto-express. Genomics. 2002;79(2):266–270.
  • Draghici S, Khatri P, Martins RP, et al. Global functional profiling of gene expression. Genomics. 2003;81(2):98–104.
  • Berriz GF, King OD, Bryant B, et al. Characterizing gene sets with FuncAssociate. Bioinformatics. 2003;19(18):2502–2504.
  • Beissbarth T, Speed TP. GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics. 2004;20(9):1464–1465.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–15550.
  • Tarca AL, Draghici S, Khatri P, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25(1):75–82.
  • Ibrahim MA-h, Jassim S, Cawthorne MA, et al. A topology-based score for pathway enrichment. J Comput Biol. 2012;19(5):563–573.
  • Martini P, Sales G, Massa MS, et al. Along signal paths: an empirical gene set approach exploiting pathway topology. Nucleic Acids Res. 2013;41(1):e19.
  • Jacob L, Neuvial P, Dudoit S. Graph-structured tests for differential expression of gene networks. Ann Appl Stat. 2012;6(2):561–600.
  • Massa MS, Chiogna M, Romualdi C. Gene set analysis exploiting the topology of a pathway. BMC Syst Biol. 2010;4:121.
  • Gao S, Wang X. TAPPA: Topological analysis of pathway phenotype association. Bioinformatics. 2007;23(22):3100–3102.
  • Hung JH, Whitfield TW, Yang TH, et al. Identification of functional modules that correlate with phenotypic difference: the influence of network topology. Genome Biol. 2010;11(2):R23.
  • Kamburov A, Stelzl U, Lehrach H, et al. The ConsensusPathDB interaction database: 2013 Update. Nucleic Acids Res. 2013;41(Database issue):D793–D800.
  • Sales G, Calura E, Cavalieri D, et al. Graphite – a Bioconductor package to convert pathway topology to gene network. BMC Bioinformatics. 2012;13:20.
  • Ihnatova I, Budinska E. ToPASeq: an R package for topology-based pathway analysis of microarray and RNA-Seq data. BMC Bioinformatics. 2015;16:350.
  • Kühl NM, Rensing L. Heat shock effects on cell cycle progression. Cell Mol Life Sci. 2000;57(3):450–463.
  • Ishida Y, Nagata K. Hsp47 as a collagen-specific molecular chaperone. Methods Enzymol. 2011;499:167–182.
  • Marber MS, Mestril R, Chi SH, et al. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest. 1995;95(4):1446–1456.
  • Dubey A, Prajapati KS, Swamy M, et al. Heat shock proteins: a therapeutic target worth to consider. Vet World. 2015;8(1):46–51.
  • Hayashida K, Sano M, Ohsawa I, et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun. 2008;373(1):30–35.
  • Zhang G, Gao S, Li X, et al. Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats. Sci Rep. 2015;5:9858.
  • Pratt WB, Gestwicki JE, Osawa Y, et al. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2015;55:353–371.
  • Peng HM, Morishima Y, Pratt WB, et al. Modulation of heme/substrate binding cleft of neuronal nitric-oxide synthase (nNOS) regulates binding of Hsp90 and Hsp70 proteins and nNOS ubiquitination. J Biol Chem. 2012;287(2):1556–1565.
  • Fu Y, Ito M, Fujita Y, et al. Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson’s disease. Neurosci Lett. 2009;453(2):81–85.
  • Li J, Wang C, Zhang JH, et al. Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res. 2010;1328:152–161.
  • Wang C, Li J, Liu Q, et al. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-κB activation in a rat model of amyloid-beta-induced Alzheimer’s disease. Neurosci Lett. 2011;491(2):127–132.
  • Kobayashi T, Hirano K, Yamamoto T, et al. The protective role of Kupffer cells in the ischemia-reperfused rat liver. Arch Histol Cytol. 2002;65(3):251–261.
  • Zhang X, Yu WP, Gao L, et al. Effects of lipopolysaccharides stimulated Kupffer cells on activation of rat hepatic stellate cells. World J Gastroenterol. 2004;10(4):610–613.
  • Dixon LJ, Barnes M, Tang H, et al. Kupffer cells in the liver. Compr Physiol. 2013;3(2):785–797.
  • Lee LY, Kaizu T, Toyokawa H, et al. Carbon monoxide induces hypothermia tolerance in Kupffer cells and attenuates liver ischemia/reperfusion injury in rats. Liver Transpl. 2011;17(12):1457–1466.
  • Murakami Y, Ito M, Ohsawa I Molecular hydrogen protects against neuroblastoma cell death through the process of mitohormesis. PLoS ONE. 2017;12(5):e0176992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.