249
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Hypochlorite modified albumins promote cell death in the tubule interstitium in rats via mitochondrial damage in obstructive nephropathy and the protective effects of antioxidant peptides

, , , , , , & show all
Pages 616-628 | Received 16 Nov 2017, Accepted 22 Mar 2018, Published online: 21 May 2018

References

  • Fabbian F, De Giorgi A, Manfredini F, et al. Impact of renal dysfunction on in-hospital mortality of patients with severe chronic obstructive pulmonary disease: a single-center Italian study. Int Urol Nephrol. 2016;48(7):1121–1127.
  • Mazzei L, Docherty NG, Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones. 2015;20(6):893–906.
  • Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci. 2015;16(3):5076–5124.
  • Indo HP, Yen HC, Nakanishi I, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr. 2015;56(1):1–7.
  • Luk TH, Dai YL, Siu CW, et al. Association of lower habitual physical activity level with mitochondrial and endothelial dysfunction in patients with stable coronary artery disease. Circ J. 2012;76(11):2572–2578.
  • Torraco A, Carrozzo R, Piemonte F, et al. Effects of levosimendan on mitochondrial function in patients with septic shock: a randomized trial. Biochimie. 2014;102:166–173.
  • Liu L, Zhang K, Sandoval H, et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 2015;160(1–2):177–190.
  • Petzold A, Nijland PG, Balk LJ, et al. Visual pathway neurodegeneration winged by mitochondrial dysfunction. Ann Clin Transl Neurol. 2015;2(2):140–150.
  • Petri S, Kiaei M, Damiano M, et al. Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem. 2006;98(4):1141–1148.
  • Calkins MJ, Manczak M, Reddy PH. Mitochondria-targeted antioxidant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals. 2012;5(10):1103–1119.
  • Zhao H, Liu YJ, Liu ZR, et al. Role of mitochondrial dysfunction in renal fibrosis promoted by hypochlorite-modified albumin in a remnant kidney model and protective effects of antioxidant peptide SS-31. Eur J Pharmacol. 2017;804:57–67.
  • Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, et al. Advanced oxidation protein products as a novel marker ofoxidative stress in uremia. Kidney Int. 1996;49(5):1304–1313.
  • Dominguez-Rodriguez A, Abreu-Gonzalez P. Current role of myeloperoxidase in routine clinical practice. Expert Rev Cardiovasc Ther 2011;9(2):223–230.
  • Malle E, Buch T, Grone HJ. Myeloperoxidase in kidney disease. Kidney Int. 2003;64(6):1956–1967.
  • Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279(33):34682–34690.
  • Mizuguchi Y, Chen J, Seshan SV, et al. A novel cell-permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction. Am J Physiol Renal Physiol. 2008;295(5):F1545–FF1553.
  • Zhao GM, Qian X, Schiller PW, et al. Comparison of [Dmt1] DALDA and DAMGO in binding and G protein activation at mu, delta, and kappa opioid receptors. J Pharmacol Exp Ther. 2003;307(3):947–954.
  • Li J, Chen X, Xiao W, et al. Mitochondria-targeted antioxidant peptide SS-31 attenuates high glucose-induced injury on human retinal endothelial cells. Biochem Biophys Res Commun. 2011;404(1):349–356.
  • Ots M, Mackenzie HS, Troy JL, et al. Effects of combination therapy with enalapril and losartan on the rate of progression of renal injury in rats with 5/6 renal mass ablation. J Am Soc Nephrol 1998;9(2):224–230.
  • Ai J, Nie J, He J, et al. GQ5 hinders renal fibrosis in obstructive nephropathy by selectively inhibiting TGF-β-induced Smad3 phosphorylation. J Am Soc Nephrol 2015;26(8):1827–1838.
  • Flameng W, Borgers M, Daenen W, et al. Ultrastructural and cytochemical correlates of myocardial protection by cardiac hypothermia in man. J Thorac Cardiovasc Surg 1980;79(3):413–424.
  • Chen JF, Liu H, Ni HF, et al. Improved mitochondrial function underlies the protective effect of pirfenidone against tubulointerstitial fibrosis in 5/6 nephrectomized rats. PLOS ONE 2013;8(12):e83593.
  • Degli Esposti M. Measuring mitochondrial reactive oxygen species. Methods. 2002;26(4):335–340.
  • Tse G, Yan BP, Chan YW, et al. Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front Physiol. 2016;7:313.
  • Yu L, Liu Y, Wu Y, et al. Smad3/Nox4-mediated mitochondrial dysfunction plays a crucial role in puromycin aminonucleoside-induced podocyte damage. Cell Signal. 2014;26(12):2979–2991.
  • Hou Y, Li S, Wu M, et al. Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Renal Physiol. 2016;310(6):F547–F559.
  • Shi XY, Hou FF, Niu HX, et al. Advanced oxidation protein products promote inflammationin diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology. 2008;149(4):1829–1839.
  • Tang D-D, Niu H-X, Fen-Fen Peng, et al. Hypochlorite-modified albumin UpregulatesICAM-1 expression via a MAPK–NF-κB signaling cascade: protective effects of apocynin. Oxid Med Cell Longev. 2016:1852340.
  • Guo ZJ, Niu HX, Hou FF, et al. Advanced oxidation protein products activate VascularEndothelial cells via a RAGE-mediated signaling pathway. Antioxid Redox Signal. 2008;10(10):1699–1712.
  • Malle E, Woenckhaus C, Waeg G, et al. Immunological evidence for hypochlorite-modified proteins in human kidney. Am J Pathol. 1997;150(2):603–615.
  • Cao W, Hou FF, Nie J. AOPPs and the progression of kidney disease. Kidney Int Suppl. 2014;4(1):102–106.
  • Marques de Mattos A, Marino LV, Ovidio PP, et al. Protein oxidative stress and dyslipidemia in dialysis patients. Ther Apher Dial. 2012;16(1):68–74.
  • Šebeková K, Klenovicsová K, Ferenczová J, et al.. Advanced oxidation protein products and advanced glycation end products in children and adolescents with chronic renal insufficiency. J Ren Nutr. 2012;22(1):143–148.
  • Small DM, Coombes JS, Bennett N, et al. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton). 2012;17(4):311–321.
  • Marsche G, Semlitsch M, Hammer A, et al. Hypochlorite-modified albumin colocalizes with RAGE in the artery wall and promotes MCP-1 expression via the RAGE-ERK1/2 MAP-kinase pathway. FASEB J. 2007;21(4):1145–1152.
  • Zhou LL, Cao W, Xie C, et al. The receptor of advanced glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis. Kidney Int. 2012;82(7):759–770.
  • Iwao Y, Nakajou K, Nagai R, et al. CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am J Physiol Renal Physiol. 2008;295(6):F1871–FF1880.
  • Dendooven A, Ishola DA Jr., Nguyen TQ, et al. Oxidative stress in obstructive nephropathy. Int J Exp Pathol. 2011;92(3):202–210.
  • Beyer RE. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem Cell Biol. 1992;70(6):390–403.
  • Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide.general properties and effect of hyperbaric oxygen. Biochem J. 1973;134(3):707–716.
  • Takeshige K, Minakami S. NADH- and NADPH-dependent formation ofsuperoxide anions by bovine heart submitochondrial particles and NADH-ubiquinonereductase preparation. Biochem J. 1979;180(1):129–135.
  • Wallace DC. Mitochondrial DNA in aging and disease. Sci Am. 1997;277(2):40–47.
  • Mattson MP, Duan W, Pedersen WA, et al. Neurodegenerative disorders and ischemic brain diseases. Apoptosis. 2001;6(1–2):69–81.
  • Choe JY, Park KY, Kim SK. Oxidative stress by monosodium urate crystalspromotes renal cell apoptosis through mitochondrial caspase-dependent pathway inhuman embryonic kidney 293 cells: mechanism for urate-induced nephropathy. Apoptosis. 2015;20(1):38–49.
  • Shen XL, Zhang Y, Xu W, et al. An iTRAQ-based mitoproteomics approach for profiling the nephrotoxicitymechanisms of ochratoxin A in HEK 293 cells. J Proteom. 2013;78:398–415.
  • Casalena G, Krick S, Daehn I, et al. Mpv17 in mitochondria protects podocytes against mitochondrial dysfunction and apoptosis in vivo and in vitro. AJP Ren Physiol. 2014;306:F1372–FF1380.
  • Kim SM, Kim YG, Jeong KH, et al. Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells. PLOS ONE. 2012;7(7):e39739.
  • Wang W, Fang H, Groom L, et al. Superoxide flashes in single mitochondria. Cell. 2008;134(2):279–290.
  • Giorgio M, Migliaccio E, Orsini F, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122(2):221–233.
  • Eisenreich A, Langer S, Herlan L, et al. Regulation of podoplanin expression by microRNA-29b associates with its antiapoptotic effect in angiotensin II-induced injury of human podocytes. J Hypertens. 2016;34(2):323–331.
  • Kluck RM, Bossy-Wetzel E, Green DR, et al. The release of cytochrome C from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275(5303):1132–1136.
  • Sanz AB, Santamaría B, Ruiz-Ortega M, et al. Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol. 2008;19(9):1634–1642.
  • Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626–629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.