1,824
Views
5
CrossRef citations to date
0
Altmetric
Review Article

The role of oxidative stress in anxiety disorder: cause or consequence?

, , , , ORCID Icon &
Pages 737-750 | Received 20 Mar 2018, Accepted 09 May 2018, Published online: 04 Jun 2018

References

  • Lichtenberg D, Pinchuk I. Oxidative stress, the term and the concept. Biochem Biophys Res Commun. 2015;461(3):441–444.
  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82(2):291–295.
  • Tabak O, Gelisgen R, Erman H, et al. Oxidative lipid, protein, and DNA damage as oxidative stress markers in vascular complications of diabetes mellitus. Clin Invest Med. 2011;34(3):E163–E171.
  • Yang Y, Herrup K. Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim Biophys Acta. 2007;1772(4):457–466.
  • Friedman J. Why is the nervous system vulnerable to oxidative stress? In: Gaoth N, Göbel H.H, editors. Oxidative stress free radical damage neurology: oxidative stress in applied basic research and clinical practice. New York (NY): Springer; 2011. p. 19–27.
  • Mason JW, Wang S, Yehuda R, et al. Marked lability in urinary cortisol levels in subgroups of combat veterans with posttraumatic stress disorder during an intensive exposure treatment program. Psychosom Med. 2002;64(2):238–246.
  • Gunther M, Nimer FA, Piehl F, et al. Neuronal vulnerability to oxidative stress is affected by genetic polymorphism and related to susceptibility to inflammation in the central nervous system. J Neurotrauma. 2016;33(3):A5.
  • Wilkinson BL, Landreth GE. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflamm. 2006;3:30.
  • Choi SH, Lee DY, Kim SU, et al. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: role of microglial NADPH oxidase. J Neurosci. 2005;25(16):4082–4090.
  • Peuchen S, Bolaños JP, Heales SJ, et al. Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol. 1997;52(4):261–281.
  • Ciobica A, Hritcu L, Padurariu M, et al. Effects of serotonin depletion on behavior and neuronal oxidative stress status in rat: relevance for anxiety and affective disorders. Adv Med Sci. 2010;55(2):289–296.
  • Salim S, Asghar M, Chugh G, et al. Oxidative stress: a potential recipe for anxiety, hypertension and insulin resistance. Brain Res. 2010;1359:178–185.
  • Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 2010;68(4):261–275.
  • Savolainen KM, Loikkanen J, Eerikäinen S, et al. Glutamate-stimulated ROS production in neuronal cultures: interactions with lead and the cholinergic system. Neurotoxicology. 1998;19(4–5):669–674.
  • Ding Q, Keller JN. Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med. 2001;31(5):574–584.
  • Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie. 2001;83(3–4):301–310.
  • Pickering AM, Davies KJ. Differential roles of proteasome and immunoproteasome regulators Pa28αβ, Pa28γ and Pa200 in the degradation of oxidized proteins. Arch Biochem Biophys. 2012;523(2):181–190.
  • Pickering AM, Linder RA, Zhang H, et al. Nrf2-dependent Induction of proteasome and Pa28 alpha beta regulator are required for adaptation to oxidative stress. J Biol Chem. 2012;287(13):10021–10031.
  • Pickering AM, Davies KJ. Degradation of damaged proteins: the main function of the 20S proteasome. Prog Mol Biol Transl Sci. 2012;109:227–248.
  • Pickering AM, Staab TA, Tower J, et al. A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster. J Exp Biol. 2013;216(Pt 4):543–553.
  • Johnston-Carey HK, Pomatto LC, Davies KJ. The immunoproteasome in oxidative stress, aging, and disease. Crit Rev Biochem Mol Biol. 2015;51(4):268–281.
  • Raynes R, Pomatto LC, Davies KJ. Degradation of oxidized proteins by the proteasome: distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol Aspects Med. 2016;50:41–55.
  • Pasquini LA, Besio Moreno M, Adamo AM, et al. Lactacystin, a specific inhibitor of the proteasome, induces apoptosis and activates caspase-3 in cultured cerebellar granule cells. J Neurosci Res. 2000;59(5):601–611.
  • Lopes UG, Erhardt P, Yao R, et al. p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem. 1997;272(20):12893–12896.
  • Kim HS, Park YW, Kasai H, et al. Induction of E. coli oh8Gua endonuclease by oxidative stress: its significance in aerobic life. Mutat Res. 1996;363(2):115–123.
  • Lobo V, Patil A, Phatak A, et al. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–126.
  • Davies KJA. Oxidative stress: the paradox of aerobic life. Biochem Soc Symp. 1995;61:1–31.
  • Davies KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life. 2000;50(4–5):279–289.
  • Davies KJ. Adaptive homeostasis. Mol Aspects Med. 2016;49:1–7.
  • Raynes R, Juarez C, Pomatto LC, et al. Aging and SKN-1-dependent loss of 20S proteasome adaptation to oxidative stress in C. elegans. J Gerontol A Biol Sci Med Sci. 2017;72(2):143–151.
  • Pomatto LCD, Tower J, Davies KJA. Sexual dimorphism and aging differentially regulate adaptive homeostasis. J Gerontol A Biol Sci Med Sci. 2018;73(2):141–149.
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.
  • Walker CL, Pomatto LCD, Tripathi DN, et al. Redox regulation of homeostasis and proteostasis in peroxisomes. Physiol Rev. 2018;98(1):89–115.
  • Bemeur C. Oxidative stress in the central nervous system complications of chronic liver failure. Oxid Stress Appl Basic Res Clin Pract. 2015:357–370.
  • Lin S-H, Lee L-T, Yang YK. Serotonin and mental disorders: a concise review on molecular neuroimaging evidence. Clin Psychopharmacol Neurosci. 2014;12(3):196–202.
  • Sarter M, Bruno JP, Parikh V. Abnormal neurotransmitter release underlying behavioral and cognitive disorders: toward concepts of dynamic and function-specific dysregulation. Neuropsychopharmacology. 2007;32:1452–1461.
  • Holmes SE, Hinz R, Drake RJ, et al. In vivo imaging of brain microglial activity in antipsychotic-free and medicated schizophrenia: a [11C](R)-PK11195 positron emission tomography study. Mol Psychiatry. 2016;21(12):1672–1679.
  • Weinberger DR. Anxiety at the frontier of molecular medicine. N Engl J Med. 2001;344(16):1247–1249.
  • Gross C, Hen R. The developmental origins of anxiety. Nat Rev Neurosci. 2004;5(7):545–552.
  • McEwen BS. Allostasis and the epigenetics of brain and body health over the life course: the brain on stress. JAMA Psychiatry. 2017;74(6):551–552.
  • Bulfin LJ, Clarke MA, Buller KM, et al. Anxiety and hypothalamic-pituitary-adrenal axis responses to psychological stress are attenuated in male rats made lean by large litter rearing. Psychoneuroendocrinology. 2011;36(7):1080–1091.
  • Grupe DW, Nitschke JB. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci. 2013;14(7):488–501.
  • Chen F, Zhou L, Bai Y, et al. Hypothalamic-pituitary-adrenal axis hyperactivity accounts for anxiety- and depression-like behaviors in rats perinatally exposed to bisphenol A. J Biomed Res. 2015;29(3):250–258.
  • Gigante AD, Young LT, Yatham LN, et al. Morphometric post-mortem studies in bipolar disorder: possible association with oxidative stress and apoptosis. Int J Neuropsychopharmacol. 2011;14(8):1075–1089.
  • Chen HJC, Spiers JG, Sernia C, et al. Response of the nitrergic system to activation of the neuroendocrine stress axis. Front Neurosci. 2015;9:3.
  • Streck EL, Gonçalves CL, Furlanetto CB, et al. Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders. Rev Bras Psiquiatr. 2014;36(2):156–167.
  • Costantini D, Marasco V, Møller AP. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B. 2011;181(4):447–456.
  • Arvier M, Lagoutte L, Johnson G, et al. Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment. Am J Physiol Endocrinol Metab. 2007;293(5):E1320–E1324.
  • Roussel D, Dumas JF, Simard G, et al. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment. Biochem J. 2004;382(2):491–499.
  • Kasahara E, Inoue M. Cross-talk between HPA-axis-increased glucocorticoids and mitochondrial stress determines immune responses and clinical manifestations of patients with sepsis. Redox Rep. 2015;20(1):1–10.
  • Du J, McEwen B, Manji HK. Glucocorticoid receptors modulate mitochondrial function: a novel mechanism for neuroprotection. Commun Integr Biol. 2009;2(4):350–352.
  • Bartis D, Boldizsár F, Kvell K, et al. Intermolecular relations between the glucocorticoid receptor, ZAP-70 kinase, and Hsp-90. Biochem Biophys Res Commun. 2007;354(1):253–258.
  • Powell SB, Sejnowski TJ, Behrens MM. Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia. Neuropharmacology. 2012;62(3):1322–1331.
  • Johnson AW, Jaaro-Peled H, Shahani N, et al. Cognitive and motivational deficits together with prefrontal oxidative stress in a mouse model for neuropsychiatric illness. Proc Natl Acad Sci USA. 2013;110(30):12462–12467.
  • Filipović D, Todorović N, Bernardi RE, et al. Oxidative and nitrosative stress pathways in the brain of socially isolated adult male rats demonstrating depressive- and anxiety-like symptoms. Brain Struct Funct. 2017;222(1):1–20.
  • Chanana P, Kumar A. GABA-BZD receptor modulating mechanism of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior: possible roles of oxidative stress, mitochondrial dysfunction and neuroinflammation. Front Neurosci. 2016;10:84.
  • Patki G, Solanki N, Atrooz F, et al. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress. Brain Res. 2013;1539:73–86.
  • Reckziegel P, Boufleur N, Barcelos RC, et al. Oxidative stress and anxiety-like symptoms related to withdrawal of passive cigarette smoke in mice: beneficial effects of pecan nut shells extract, a by-product of the nut industry. Ecotoxicol Environ Saf. 2011;74(6):1770–1778.
  • de Oliveira MR, Silvestrin RB, Mello E Souza T, et al. Oxidative stress in the hippocampus, anxiety-like behavior and decreased locomotory and exploratory activity of adult rats: effects of sub acute vitamin A supplementation at therapeutic doses. Neurotoxicology. 2007;28(6):1191–1199.
  • Berry A, Greco A, Giorgio M, et al. Deletion of the lifespan determinant p66(Shc) improves performance in a spatial memory task, decreases levels of oxidative stress markers in the hippocampus and increases levels of the neurotrophin BDNF in adult mice. Exp Gerontol. 2008;43(3):200–208.
  • Desrumaux C, Deckert V, Lemaire-Ewing S, et al. Plasma phospholipid transfer protein deficiency in mice is associated with a reduced thrombotic response to acute intravascular oxidative stress. Arterioscler Thromb Vasc Biol. 2010;30(12):2452–2457.
  • Vollert C, Zagaar M, Hovatta I, et al. Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behav Brain Res. 2011;224(2):233–240.
  • Kurhe Y, Mahesh R, Devadoss T. QCM-4, a 5-HT(3) receptor antagonist ameliorates plasma HPA axis hyperactivity, leptin resistance and brain oxidative stress in depression and anxiety-like behavior in obese mice. Biochem Biophys Res Commun. 2015;456(1):74–79.
  • Kumar A, Kaur G, Rinwa P. Buspirone along with melatonin attenuates oxidative damage and anxiety-like behavior in a mouse model of immobilization stress. Chin J Nat Med. 2014;12(8):582–589.
  • Dhingra MS, Dhingra S, Kumria R, et al. Effect of trimethylgallic acid esters against chronic stress-induced anxiety-like behavior and oxidative stress in mice. Pharmacol Rep. 2014;66(4):606–612.
  • Souza CG, Moreira JD, Siqueira IR, et al. Highly palatable diet consumption increases protein oxidation in rat frontal cortex and anxiety-like behavior. Life Sci. 2007;81(3):198–203.
  • Masood A, Nadeem A, Mustafa SJ, et al. Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice. J Pharmacol Exp Ther. 2008;326(2):369–379.
  • Nagahara N, Nagano M, Ito T, et al. Antioxidant enzyme, 3-mercaptopyruvate sulfurtransferase-knockout mice exhibit increased anxiety-like behaviors: a model for human mercaptolactate-cysteine disulfiduria. Sci Rep. 2013;3:1986.
  • Patki G, Ali Q, Pokkunuri I, et al. Grape powder treatment prevents anxiety-like behavior in a rat model of aging. Nutr Res. 2015;35(6):504–511.
  • Patki G, Salvi A, Liu H, et al. Tempol treatment reduces anxiety-like behaviors induced by multiple anxiogenic drugs in rats. PLoS One. 2015;10(3):e0117498.
  • Tarbali S, Khezri S. Protective effects of vitamin D3 on anxiety-like behavior and the total antioxidant power following the local injection of lysophosphatidylcholine in the adult rat dorsal hippocampus. J Neurol Sci Turk. 2015;32(3):482–493.
  • Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat. 2015;11:165–175.
  • Farach FJ, Pruitt LD, Jun JJ, et al. Pharmacological treatment of anxiety disorders: current treatments and future directions. J Anxiety Disord. 2012;26(8):833–843.
  • Möhler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology. 2012;62(1):42–53.
  • Cassano GB, Baldini Rossi N, Pini S. Psychopharmacology of anxiety disorders. Dial Clin Neurosci. 2002;4(3):271–285.
  • Fiedorowicz JG, Swartz KL. The role of monoamine oxidase inhibitors in current psychiatric practice. J Psychiatr Pract. 2004;10(4):239–248.
  • Hindmarch I. Beyond the monoamine hypothesis: mechanisms, molecules and methods. Eur Psychiatry. 2002;17:294–299.
  • Martin EI, Ressler KJ, Binder E, et al. The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Clin Lab Med. 2010;30(4):865–891.
  • Fox AS, Kalin NH. A translational neuroscience approach to understanding the development of social anxiety disorder and its pathophysiology. Am J Psychiatry. 2014;171(11):1162–1173.
  • Rauch SL. The pathophysiology of anxiety. Int J Neuropsychopharmacol. 2004;7:S17.
  • Strian F. Pathophysiology of anxiety. Adv Med Educ Pract. 1995/6;19:73–83.
  • Black CN, Bot M, Scheffer PG, et al. Oxidative stress in major depressive and anxiety disorders, and the association with antidepressant use; results from a large adult cohort. Psychol Med. 2017;47(5):936–948.
  • Jin H, Kanthasamy A, Ghosh A, et al. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta. 2014;1842(8):1282–1294.
  • Odunze IN, Klaidman LK, Adams JD. MPTP toxicity in the mouse brain and vitamin E. Neurosci Lett. 1990;108(3):346–349.
  • Lan J, Jiang DH. Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neural Transm. 1997;104(4–5):469–481.
  • Seidl SE, Potashkin JA. The promise of neuroprotective agents in Parkinson’s disease. Front Neurol. 2011;2:68.
  • Shah SA, Yoon GH, Kim HO, et al. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain. Neurochem Res. 2015;40(5):875–884.
  • Dedeoglu A, Kubilus JK, Yang L, et al. Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. J Neurochem. 2003;85(6):1359–1367.
  • Battal D, Yalin S, Eker ED, et al. Possible role of selective serotonin reuptake inhibitor sertraline on oxidative stress responses. Eur Rev Med Pharmacol Sci. 2014;18(4):477–484.
  • da Silva AI, Braz GR, Silva-Filho R, et al. Effect of fluoxetine treatment on mitochondrial bioenergetics in central and peripheral rat tissues. Appl Physiol Nutr Metab. 2015;40(6):565–574.
  • Ienco EC, LoGerfo A, Carlesi C, et al. Oxidative stress treatment for clinical trials in neurodegenerative diseases. J Alzheimers Dis. 2011;24:111–126.
  • Ramos E, Romero A, Marco-Contelles J, et al. Upregulation of antioxidant enzymes by ASS234, a multitarget directed propargylamine for Alzheimer’s disease therapy. CNS Neurosci Ther. 2016;22(9):799–802.
  • Xu Y, Wang C, Klabnik JJ, et al. Novel therapeutic targets in depression and anxiety: antioxidants as a candidate treatment. Curr Neuropharmacol. 2014;12(2):108–119.
  • Black C, Bot M, Scheffer P, et al. Antioxidant uric acid is lower in current major depression and anxiety disorders. Eur Psychiatry. 2016;33:141.
  • Islam MR, Bin Sayeed MS, Ahmed MU, et al. Clinical investigation of serum trace elements, antioxidants and immunoglobulins in generalized anxiety disorder patients in Bangladesh. Eur Psychiatry. 2013;28.
  • Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391(10128):1357–1366.
  • Bouayed J, Rammal H, Dicko A, et al. The antioxidant effect of plums and polyphenolic compounds against H2O2-induced oxidative stress in mouse blood granulocytes. J Med Food. 2009;12(4):861–868.
  • Bouayed J, Rammal H, Soulimani R. Oxidative stress and anxiety: relationship and cellular pathways. Oxid Med Cell Longev. 2009;2(2):63–67.
  • Dias GP, Cavegn N, Nix A, et al. The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. Oxid Med Cell Longev. 2012;2012:541971.
  • Skaper SD, Facci L, Giusti P. Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol Disord Drug Targets. 2014;13(10):1654–1666.
  • Lynch MA. The multifaceted profile of activated microglia. Mol Neurobiol. 2009;40(2):139–156.
  • Tian L, Ma L, Kaarela T, et al. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J Neuroinflamm. 2012;9:155.
  • Butovsky O, Ziv Y, Schwartz A, et al. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci. 2006;31(1):149–160.
  • Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathol. 2010;119(1):89–105.
  • Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.
  • Streit WJ. Microglial activation and neuroinflammation in Alzheimer’s disease: a critical examination of recent history. Front Aging Neurosci. 2010;2:22.
  • Svenungsson E, Andersson M, Brundin L, et al. Increased levels of proinflammatory cytokines and nitric oxide metabolites in neuropsychiatric lupus erythematosus. Ann Rheum Dis. 2001;60(4):372–379.
  • Wang WY, Tan MS, Yu JT, et al. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3(10):136.
  • Witko-Sarsat V, Rieu P, Descamps-Latscha B, et al. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest. 2000;80(5):617–653.
  • Brites D, Fernandes A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 2015;9:476.
  • Salim S, Chugh G, Asghar M. Inflammation in anxiety. Adv Protein Chem Struct Biol. 2012;88:1–25.
  • Munk PS, Isaksen K, Brønnick K, et al. Symptoms of anxiety and depression after percutaneous coronary intervention are associated with decreased heart rate variability, impaired endothelial function and increased inflammation. Int J Cardiol. 2012;158(1):173–176.
  • Chen J, Winston JH, Fu Y, et al. Genesis of anxiety, depression, and ongoing abdominal discomfort in ulcerative colitis-like colon inflammation. Am J Physiol Regul Integr Comp Physiol. 2015;308(1):R18–R27.
  • Lisboa SF, Gomes FV, Guimaraes FS, et al. Microglial cells as a link between cannabinoids and the immune hypothesis of psychiatric disorders. Front Neurol. 2016;7:5.
  • Liu D, Wang Z, Liu S, et al. Anti-inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells. Neuropharmacology. 2011;61(4):592–599.
  • Chollet F, Tardy J, Albucher JF, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011;10(2):123–130.
  • Ng KL, Gibson EM, Hubbard R, et al. Fluoxetine maintains a state of heightened responsiveness to motor training early after stroke in a mouse model. Stroke. 2015;46(10):2951–2960.
  • Wohleb ES, Hanke ML, Corona AW, et al. Beta-adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci. 2011;31(17):6277–6288.
  • Innamorato NG, Rojo AI, García-Yagüe AJ, et al. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol. 2008;181(1):680–689.
  • Onasanwo SA, Velagapudi R, El-Bakoush A, et al. Inhibition of neuroinflammation in BV2 microglia by the biflavonoid kolaviron is dependent on the Nrf2/ARE antioxidant protective mechanism. Mol Cell Biochem. 2016;414(1–2):23–36.
  • Buendia I, Michalska P, Navarro E, et al. Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther. 2016;157:84–104.
  • Miller DM, Singh IN, Wang JA, et al. The Nrf2-are pathway as a therapeutic target in traumatic brain injury: genetic and pharmacological approaches for neuroprotection. J Neurotrauma. 2014;31(12):A86.
  • Shih AY, Li P, Murphy TH. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci. 2005;25(44):10321–10335.
  • Shah ZA, Li RC, Thimmulappa RK, et al. Role of reactive oxygen species in modulation of Nrf2 following ischemic reperfusion injury. Neuroscience. 2007;147(1):53–59.
  • Muramatsu H, Katsuoka F, Toide K, et al. Nrf2 deficiency leads to behavioral, neurochemical and transcriptional changes in mice. Genes Cells. 2013;18(10):899–908.
  • Duffy S, So A, Murphy TH. Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J Neurochem. 1998;71(1):69–77.
  • Shih AY, Erb H, Murphy TH. Dopamine activates Nrf2-regulated neuroprotective pathways in astrocytes and meningeal cells. J Neurochem. 2007;101(1):109–119.
  • Lukic I, Mitic M, Djordjevic J, et al. Lymphocyte levels of redox-sensitive transcription factors and antioxidative enzymes as indicators of pro-oxidative state in depressive patients. Neuropsychobiology. 2014;70(1):1–9.
  • Mendez-David I, Tritschler L, Ali ZE, et al. Nrf2-signaling and BDNF: A new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci Lett. 2015;597:121–126.
  • Sandberg M, Patil J, D’Angelo B, et al. NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology. 2014;79:298–306.
  • Malhotra D. Erratum: Correction to Funding Acknowledgment. Am J Respir Crit Care Med. 2009;179(7):624–624.
  • Gong B, Radulovic M, Figueiredo-Pereira ME, et al. The ubiquitin-proteasome system: potential therapeutic targets for Alzheimer’s disease and spinal cord injury. Front Mol Neurosci. 2016;9:4.
  • Baumeister W, Walz J, Zühl F, et al. The proteasome: paradigm of a selfcompartmentalizing protease. Cell. 1998;92(3):367–380.
  • Grune T, Catalgol B, Licht A, et al. HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med. 2011;51(7):1355–1364.
  • Reeg S, Jung T, Castro JP, et al. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med. 2016;99:153–166.
  • Wang X, Yen J, Kaiser P, et al. Regulation of the 26S proteasome complex during oxidative stress. Sci Signal. 2010;3(151):ra88.
  • Jang JW, Wang Y, Kim HS, et al. Nrf2, a regulator of the proteasome, controls selfrenewal and pluripotency in human embryonic stem cells. Stem Cells. 2014;32(10):2616–2625.
  • Thimmulappa RK, Lee H, Rangasamy T, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest. 2006;116(4):984–995.
  • Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 2004;36(10):1199–1207.
  • Demuro A, Mina E, Kayed R, et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem. 2005;280(17):17294–17300.
  • Kravtsova-Ivantsiv Y, Cohen S, Ciechanover A. Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor. Mol Cell. 2009;33(4):496–504.
  • Davidson Y, Kelley T, Mackenzie IR, et al. Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol. 2007;113(5):521–533.
  • Pickering AM, Vojtovich L, Tower J, et al. Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic Biol Med. 2013;55:109–118.
  • Lomeli N, Bota DA, Davies KJA. Diminished stress resistance and defective adaptive homeostasis in age-related diseases. Clin Sci (Lond). 2017;131(21):2573–2599.
  • Bota DA, Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol. 2002;4(9):674–680.
  • Bota DA, Davies KJ. Mitochondrial Lon protease in human disease and aging: including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med. 2016;100:188–198.
  • Pomatto LCD, Carney C, Shen B, et al. The mitochondrial Lon protease is required for age-specific and sex-specific adaptation to oxidative stress. Curr Biol. 2017;27(1):1–15.
  • Gragnoli C. Proteasome modulator 9 gene SNPs, responsible for anti-depressant response, are in linkage with generalized anxiety disorder. J Cell Physiol. 2014;229(9):1157–1159.
  • Shringarpure R, Davies KJ. Protein turnover by the proteasome in aging and disease. Free Radic Biol Med. 2002;32(11):1084–1089.
  • Verhoeven JE, Révész D, van Oppen P, et al. Anxiety disorders and accelerated cellular ageing. Br J Psychiatry. 2015;206:371–378.
  • Brocardo PS, Boehme F, Patten A, et al. Anxiety- and depression-like behaviors are accompanied by an increase in oxidative stress in a rat model of fetal alcohol spectrum disorders: protective effects of voluntary physical exercise. Neuropharmacology. 2012;62(4):1607–1618.
  • Rammal H, Bouayed J, Younos C, et al. Evidence that oxidative stress is linked to anxiety-related behaviour in mice. Brain Behav Immun. 2008;22(8):1156–1159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.