541
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Mitochondrial translation factor EF4 regulates oxidative phosphorylation complexes and the production of ROS

&
Pages 1250-1255 | Received 30 Sep 2017, Accepted 17 May 2018, Published online: 29 Jan 2019

References

  • Zhang D, Qin Y. The paradox of elongation factor 4: highly conserved, yet of no physiological significance? Biochem J 2013;452(2):173–181.
  • Heller JLE, Kamalampeta R, Wieden HJ. Taking a step back from back-translocation: an integrative view of LepA/EF4’s cellular function. Mol Cell Biol 2017;37(12):e00653-16.
  • Qin Y, Polacek N, Vesper O, et al. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 2006;127(4):721–733.
  • Bauerschmitt H, Funes S, Herrmann JM. The membrane-bound GTPase Guf1 promotes mitochondrial protein synthesis under suboptimal conditions. J Biol Chem 2008;283(25):17139–17146.
  • Bijlsma JJE, Lie-A-Ling M, Nootenboom IC, et al. Identification of loci essential for the growth of Helicobacter pylori under acidic conditions. J Infect Dis 2000;182(5):1566–1569.
  • Pech M, Karim Z, Yamamoto H, et al. Elongation factor 4 (EF4/LepA) accelerates protein synthesis at increased Mg2+ concentrations. Proc Natl Acad Sci USA 2011;108(8):3199–3203.
  • Yang F, Gao Y, Li Z, et al. Mitochondrial EF4 links respiratory dysfunction and cytoplasmic translation in Caenorhabditis elegans. Biochim Biophys Acta 2014;1837(10):1674–1683.
  • Yang F, Li Z, Hao J, et al. EF4 knockout E. coli cells exhibit lower levels of cellular biosynthesis under acidic stress. Protein Cell 2014;5(7):563–567.
  • Evans RN, Blaha G, Bailey S, et al. The structure of LepA, the ribosomal back translocase. Proc Natl Acad Sci 2008;105(12):4673–4678.
  • Yamamoto H, Qin Y, Achenbach J, et al. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Nat Rev Microbiol 2014;12(2):89–100.
  • Han B, Qin Y. Bioinformatics analysis reveals that LepA C-terminal domain is highly conserved in domain architectures and phylogenetic distribution. Sci Sin Chim 2011;42(1):24–31.
  • Connell SR, Topf M, Qin Y, et al. A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation. Nat Struct Mol Biol 2008;15(9):910–915.
  • Liu H, Pan D, Pech M, et al. Interrupted catalysis: the EF4 (LepA) effect on back-translocation. J Mol Biol 2010;396(4):1043–1052.
  • Ero R, Kumar V, Chen Y, et al. Similarity and diversity of translational GTPase factors EF-G, EF4, and BipA: from structure to function. RNA Biol 2016;13(12):1258–1273.
  • Balakrishnan R, Oman K, Shoji S, et al. The conserved GTPase LepA contributes mainly to translation initiation in Escherichia coli. Nucleic Acids Res 2014;42(21):13370–13383.
  • Zhang D, Yan K, Liu G, et al. EF4 disengages the peptidyl-tRNA CCA end and facilitates back-translocation on the 70S ribosome. Nat Struct Mol Biol 2016;23(2):125–131.
  • Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 2007;76:679–699.
  • Gao Y, Bai X, Zhang D, et al. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis. Nature 2016;201:6.
  • Cao X, Qin Y. Mitochondrial translation factors reflect coordination between organelles and cytoplasmic translation via mTOR signaling: implication in disease. Free Radic Biol Med 2016;100:231–237.
  • Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta (BBA) – Gene Regulatory Mechanisms 2012;1819(9–10):1035–1054.
  • Kehrein K, Bonnefoy N, Ott M. Mitochondrial protein synthesis: efficiency and accuracy. Antioxid Redox Signal 2013;19(16):1928–1939.
  • Ott M, Amunts A, Brown A. Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 2016;85:77–101.
  • Laplante M, Sabatini DM. mTOR signaling. Cold Spring Harb Perspect Biol 2012;4(2):a011593.
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;149(2):274–293.
  • Yang H, Rudge DG, Koos JD, et al. mTOR kinase structure, mechanism and regulation. Nature 2013;497(7448):217–223.
  • Yang Q, Guan KL. Expanding mTOR signaling. Cell Res 2007;17(8):666–681.
  • Roux PP, Topisirovic I. Regulation of mRNA translation by signaling pathways. Cold Spring Harb Perspect Biol 2012;4(11):a012252.
  • Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 2013;15(6):555–564.
  • Ramanathan A, Schreiber SL. Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci USA 2009;106(52):22229–22232.
  • Bleier L, Wittig I, Heide H, et al. Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med 2015;78:1–10.
  • Wakim J, Goudenege D, Perrot R, et al. CLUH couples mitochondrial distribution to the energetic and metabolic status. J Cell Sci 2017;130(11):1940–1951.
  • Sun J, Trumpower BL. Superoxide anion generation by the cytochrome BC1 complex. Arch Biochem Biophys 2003;419(2):198–206.
  • Zhang L, Yu L, Yu CA. Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem 1998;273(51):33972–33976.
  • Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol 2010;45(7–8):466–472.
  • Miwa S, St-Pierre J, Partridge L, et al. Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic Biol Med 2003;35(8):938–948.
  • Aluri HS, Simpson DC, Allegood JC, et al. Electron flow into cytochrome c coupled with reactive oxygen species from the electron transport chain converts cytochrome c to a cardiolipin peroxidase: role during ischemia-reperfusion. Biochim Biophys Acta 2014;1840(11):3199–3207.
  • Liu X, Kim CN, Yang J, et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86(1):147–157.
  • Pham NA, Robinson BH, Hedley DW. Simultaneous detection of mitochondrial respiratory chain activity and reactive oxygen in digitonin-permeabilized cells using flow cytometry. Cytometry 2000;41(4):245–251.
  • Kim WS, Lee KS, Kim JH, et al. The caspase-8/Bid/cytochrome c axis links signals from death receptors to mitochondrial reactive oxygen species production. Free Radic Biol Med 2017;112:567–577.
  • Kussmaul L, Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 2006;103(20):7607–7612.
  • Hirst J, King MS, Pryde KR. The production of reactive oxygen species by complex I. Biochm Soc Trans 2008;36(5):976–980.
  • Cape JL, Bowman MK, Kramer DM. A semiquinone intermediate generated at the Qo site of the cytochrome BC1 complex: importance for the Q-cycle and superoxide production. Proc Natl Acad Sci USA 2007;104(19):7887–7892.
  • Chen Q, Vazquez EJ, Moghaddas S, et al. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 2003;278(38):36027–36031.
  • Senoo-Matsuda N, Yasuda K, Tsuda M, et al. A defect in the cytochrome b large subunit in Complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J Biol Chem 2001;276(45):41553–41558.
  • Wallace DC. The epigenome and the mitochondrion: bioenergetics and the environment. Genes Dev 2010;24(15):1571–1573.
  • Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007;8(11):870–879
  • Cheignon C, Tomas M, Bonnefont-Rousselot D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 2018;14:450–464.
  • Bonet-Costa V, Pomatto LCD, Davies KJA. The proteasome and oxidative stress in Alzheimer’s disease. Antioxid Redox Signal 2016;25(16):886–901.
  • Wang X, Wang W, Li L, et al. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta (BBA) – Molecular Basis of Disease 2014;1842(8):1240–1247.
  • Czapski GA, Cieślik M, Wencel PL, et al. Inhibition of poly(ADP-ribose) polymerase-1 alters expression of mitochondria-related genes in PC12 cells: relevance to mitochondrial homeostasis in neurodegenerative disorders. Biochim Biophys Acta 2018;1865(2):281–288.
  • Martire S, Fuso A, Mosca L, et al. Bioenergetic impairment in animal and cellular models of Alzheimer’s disease: PARP-1 inhibition rescues metabolic dysfunctions. J Alzheimers Dis 2016;54(1):307–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.