722
Views
30
CrossRef citations to date
0
Altmetric
Original Article

Characterisation and quantification of protein oxidative modifications and amino acid racemisation in powdered infant milk formula

, , , , , , & show all
Pages 68-81 | Received 08 Oct 2018, Accepted 27 Nov 2018, Published online: 16 Jan 2019

References

  • Gathercole J, Reis MG, Agnew M, et al. Molecular modification associated with the heat treatment of bovine milk. Int Dairy J. 2017;73:74–83.
  • Davies MJ. Protein oxidation and peroxidation. Biochem J. 2016;473(7):805–825.
  • Finot PA. The absorption and metabolism of modified amino acids in processed foods. J AOAC Int. 2005;88(3):894–903.
  • Harlan DM, Lee MM. Infant formula, autoimmune triggers, and type 1 diabetes. N Engl J Med. 2010;363(20):1961–1963.
  • Knip M, Virtanen SM, Akerblom HK. Infant feeding and the risk of type 1 diabetes. Am J Clin Nutr. 2010;91(5):1506S–1513S.
  • Tham TWY, Yeoh ATH, Zhou W. Characterisation of aged infant formulas and physicochemical changes. Food Chem. 2017;219:117–125.
  • Almansa I, Miranda M, Jareño E, et al. Lipid peroxidation in infant formulas: longitudinal study at different storage temperatures. Int Dairy J. 2013;33(1):83–87.
  • Friedman M, Levin CE. Nutritional and medicinal aspects of D-amino acids. Amino Acids. 2012;42(5):1553–1582.
  • Schöneich C. Sulfur radical-induced redox modifications in proteins: analysis and mechanistic aspects. Antioxid Redox Signal. 2017;26(8):388–405.
  • Krämer AC, Thulstrup PW, Lund MN, et al. Key role of cysteine residues and sulfenic acids in thermal- and H2O2-mediated modification of beta-lactoglobulin. Free Radic Biol Med. 2016;97:544–555.
  • Dalsgaard TK, Nielsen JH, Brown BE, et al. Dityrosine, 3,4-dihydroxyphenylalanine (DOPA), and radical formation from tyrosine residues on milk proteins with globular and flexible structures as a result of riboflavin-mediated photo-oxidation. J Agric Food Chem. 2011;59(14):7939–7947.
  • Fuentes-Lemus E, Silva E, Leinisch F, et al. Alpha- and beta-casein aggregation induced by riboflavin-sensitized photo-oxidation occurs via di-tyrosine cross-links and is oxygen concentration dependent. Food Chem. 2018;256:119–128.
  • Linetsky M, Hill JM, LeGrand RD, et al. Dehydroalanine crosslinks in human lens. Exp Eye Res. 2004;79(4):499–512.
  • Boatright WL, Crum AD. Redox cycling and generation of reactive oxygen species in commercial infant formulas. Food Chem. 2016;196:189–195.
  • Scheidegger D, Radici PM, Vergara-Roig VA, et al. Evaluation of milk powder quality by protein oxidative modifications. J Dairy Sci. 2013;96(6):3414–3423.
  • Halliwell B, Gutteridge JMC. Free radicals in biology & medicine. Oxford: Oxford University Press; 2015.
  • Hawkins CL, Morgan PE, Davies MJ. Quantification of protein modification by oxidants. Free Radic Biol Med. 2009;46(8):965–988.
  • Leinisch F, Mariotti M, Rykaer M, et al. Peroxyl radical- and photo-oxidation of glucose 6-phosphate dehydrogenase generates cross-links and functional changes via oxidation of tyrosine and tryptophan residues. Free Radic Biol Med. 2017;112:240–252.
  • Rombouts I, Lagrain B, Brijs K, et al. Colorimetric determination of dehydroalanine in wheat gluten. J Cereal Sci. 2011;54(1):148–150.
  • Troise AD, Fiore A, Wiltafsky M, et al. Quantification of Nε-(2-furoylmethyl)-l-lysine (furosine), Nε-(carboxymethyl)-l-lysine (CML), Nε-(carboxyethyl)-l-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry. Food Chem. 2015;188:357–364.
  • Müller C, Fonseca JR, Rock TM, et al. Enantioseparation and selective detection of D-amino acids by ultra-high-performance liquid chromatography/mass spectrometry in analysis of complex biological samples. J Chromatogr A. 2014;1324:109–114.
  • Bar-Or R, Rael LT, Bar-Or D. Dehydroalanine derived from cysteine is a common post-translational modification inhuman serum albumin. Rapid Commun Mass Spectrom. 2008;22(5):711–716.
  • Mozziconacci O, Schöneich C. Sequence-specific formation of D-amino acids in a monoclonal antibody during light exposure. Mol Pharmaceutics. 2014;11(11):4291–4297.
  • Birlouez-Aragon I, Pischetsrieder M, Leclere J, et al. Assessment of protein glycation markers in infant formulas. Food Chem. 2004;87(2):253–259.
  • Dittrich R, Hoffmann I, Stahl P, et al. Concentrations of Nepsilon-carboxymethyllysine in human breast milk, infant formulas, and urine of infants. J Agric Food Chem. 2006;54(18):6924–6928.
  • Meltretter J, Seeber S, Humeny A, et al. Site-specific formation of maillard, oxidation, and condensation products from whey proteins during reaction with lactose. J Agric Food Chem. 2007;55(15):6096–6103.
  • Pischetsrieder M, Henle T. Glycation products in infant formulas: chemical, analytical and physiological aspects. Amino Acids. 2012;42(4):1111–1118.
  • Cesa S. Malondialdehyde contents in infant milk formulas. J Agric Food Chem. 2004;52(7):2119–2122.
  • Surh J, Lee S, Kwon H. 4-Hydroxy-2-alkenals in polyunsaturated fatty acids-fortified infant formulas and other commercial food products. Food Addit Contam. 2007;24(11):1209–1218.
  • Fenaille F, Parisod V, Visani P, et al. Modifications of milk constituents during processing: a preliminary benchmarking study. Int Dairy J. 2006;16(7):728–739.
  • Friedman M. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J Agric Food Chem. 1999;47(4):1295–1319.
  • Houée-Lévin C, Bobrowski K, Horakova L, et al. Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res. 2015;49(4):347–373.
  • Prütz WA, Butler J, Land EJ, et al. Direct demonstration of electron transfer between tryptophan and tyrosine in proteins. Biochem Biophys Res Commun. 1980;96(1):408–414.
  • Ehrenshaft M, Deterding LJ, Mason RP. Tripping up Trp: modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radic Biol Med. 2015;89:220–228.
  • Bogahawaththa D, Chandrapala J, Vasiljevic T. Modulation of milk immunogenicity by thermal processing. Int Dairy J. 2017;69:23–32.
  • Faist V, Drusch S, Kiesner C, et al. Determination of lysinoalanine in foods containing milk protein by high-performance chromatography after derivatisation with dansyl chloride. Int Dairy J. 2000;10(5–6):339–346.
  • D’Agostina A, Boschin G, Rinaldi A, et al. Updating on the lysinoalanine content of commercial infant formulae and beicost products. Food Chem. 2003;80(4):483–488.
  • Li ZL, Shi YH, Ding YY, et al. Dietary oxidized tyrosine (O-Tyr) stimulates TGF-beta 1-induced extracellular matrix production via the JNK/p38 signaling pathway in rat kidneys. Amino Acids. 2017;49(2):241–260.
  • Saukkonen T, Virtanen SM, Karppinen M, et al. Significance of cow’s milk protein antibodies as risk factor for childhood IDDM: interactions with dietary cow’s milk intake and HLA-DQB1 genotype. Childhood Diabetes in Finland Study Group. Diabetologia. 1998;41(1):72–78.
  • Vaarala O, Ilonen J, Ruohtula T, and others. Removal of bovine insulin from cow’s milk formula and early initiation of beta-cell autoimmunity in the FINDIA pilot study. Arch Pediatr Adolesc Med. 2012;166(7):608–614.
  • Writing Group for the TRIGR Study Group, Knip M, Åkerblom HK, et al. Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes: The TRIGR Randomized Clinical Trial. JAMA. 2018;319(1):38–48.
  • Hummel S, Beyerlein A, Tamura R, and others. First infant formula type and risk of islet autoimmunity in the Environmental Determinants of Diabetes in the Young (TEDDY) Study. Diabetes Care. 2017;40(3):398–404.
  • Elmhiri G, Hamoudi D, Dou S, et al. Antioxidant properties of formula derived Maillard reaction products in colons of intrauterine growth restricted pigs. Food Funct. 2016;7(6):2582–2590.
  • Elmhiri G, Mahmood DFD, Niquet-Leridon C, et al. Formula-derived advanced glycation end products are involved in the development of long-term inflammation and oxidative stress in kidney of IUGR piglets. Mol Nutr Food Res. 2015;59(5):939–947.
  • Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357(6349):eaaf9794.
  • Heine W, Radke M, Wutzke KD, et al. Alpha-lactalbumin-enriched low-protein infant formulas: a comparison to breast milk feeding. Acta Paediatr. 1996;85(9):1024–1028.
  • Zanardo V, D’Aquino M, Stocchero L, et al. Serum total and free tryptophan levels in term infants fed cow’s milk formula or human milk. Eur J Pediatr. 1989;148(8):781–783.
  • O’Sullivan A, He X, McNiven EM, et al. Early diet impacts infant rhesus gut microbiome, immunity, and metabolism. J Proteome Res. 2013;12(6):2833–2845.
  • Deoni SC, Dean DC, 3rd, Piryatinsky I, et al. Breastfeeding and early white matter development: a cross-sectional study. Neuroimage. 2013;82:77–86.
  • Horta BL, Victora CG Long-term effects of breastfeeding – a systematic review. Geneva, Switzerland: World Health Organization; 2013. p. 1–74.
  • Carabotti M, Scirocco A, Maselli MA, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209.
  • Saraf MK, Piccolo BD, Bowlin AK, et al. Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon. Microbiome. 2017;5(1):77.
  • Azad MB, Konya T, Maughan H, and others. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385–394.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.