592
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Relationship between the radical-scavenging activity of selected flavonols and thermodynamic parameters calculated by density functional theory

ORCID Icon, ORCID Icon, , , , ORCID Icon, & show all
Pages 535-539 | Received 23 Mar 2020, Accepted 17 Aug 2020, Published online: 07 Sep 2020

References

  • Quideau S, Deffieux D, Douat-Casassus C, et al. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl. 2011;50(3):586–621.
  • Sharma A, Kashyap D, Sak K, et al. Therapeutic charm of quercetin and its derivatives: a review of research and patents. Pharm Pat Anal. 2018;7(1):15–32.
  • Musialik M, Kuzmicz R, Pawłowski TS, et al. Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem. 2009;74(7):2699–2709.
  • Foti MC, Daquino C, DiLabio GA, et al. Kinetics of the oxidation of quercetin by 2,2-diphenyl-1-picrylhydrazyl (dpph•). Org Lett. 2011;13(18):4826–4829.
  • Stepanić V, Matić S, Amić A, et al. Effects of conjugation metabolism on radical scavenging and transport properties of quercetin – In silico study. J Mol Graph Model. 2019; 86:278–285.
  • Wright JS, Johnson ER, DiLabio GA. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc. 2001;123(6):1173–1183.
  • Leopoldini M, Marino T, Russo N, et al. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A. 2004;108(22):4916–4922.
  • Kawashima T, Manda S, Uto Y, et al. Kinetics and mechanism for the scavenging reaction of the 2,2-diphenyl-1-picrylhydrazyl radical by synthetic artepillin C analogues. BCSJ. 2012;85(8):877–883.
  • Manda S, Nakanishi I, Ohkubo K, et al. Enhanced radical-scavenging activity of naturally-oriented artepillin C derivatives. Chem Commun. 2008;(5):626–628.
  • Nakanishi I, Shimada T, Ohkubo K, et al. Involvement of electron transfer in the radical-scavenging reaction of resveratrol. Chem Lett. 2007;36(10):1276–1277.
  • Nakanishi I, Kawashima T, Ohkubo K, et al. Electron-transfer mechanism in radical-scavenging reactions by a vitamin E model in a protic medium. Org Biomol Chem. 2005;3(4):626–629.
  • Nakanishi I, Miyazaki K, Shimada T, et al. Effects of metal ions distinguishing between one-step hydrogen- and electron-transfer mechanisms for the radical-scavenging reaction of (+)-catechin. J Phys Chem A. 2002;106(46):11123–11126.
  • Nakanishi I, Fukuhara K, Shimada T, et al. Effects of magnesium ion on kinetic stability and spin distribution of phenoxyl radical derived from a vitamin E analogue: mechanistic insight into antioxidative hydrogen transfer reaction of vitamin E. J Chem Soc, Perkin Trans 2. 2002;(9):1520–1524.
  • Imai K, Nakanishi I, Ohkubo K, et al. Synthesis of methylated quercetin analogues for enhancement of radical-scavenging activity. RSC Adv. 2017;7(29):17968–17979.
  • Frisch J, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.02. Wallingford, CT: Gaussian, Inc.; 2009.
  • Shi H, Noguchi N, Niki E. Galvinoxyl method for standardizing electron and proton donation activity. Methods Enzymol. 2001;335:157–166.
  • Fukuzumi S, Ohkubo K. Metal ion-coupled and decoupled electron transfer. Coord. Chem. Rev. 2010;254(3-4):372–385.
  • Fukuzumi S, Ohkubo K, Morimoto Y. Mechanisms of metal ion-coupled electron transfer. Phys Chem Chem Phys. 2012;14(24):8472.
  • Nakanishi I, Ohkubo K, Miyazaki K, et al. A Planar Catechin Analogue Having a More Negative Oxidation Potential than (+)-Catechin as an Electron Transfer Antioxidant against a Peroxyl Radical. Chem Res Toxicol. 2004;17(1):26–31.
  • Nakanishi I, Kawaguchi K, Ohkubo K, et al. Scandium Ion-accelerated Scavenging Reaction of Cumylperoxyl Radical by a Cyclic Nitroxyl Radical via Electron Transfer. Chem Lett. 2007;36(3):378–379.