117
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Constitutive activity of NADPH oxidase 1 (Nox1) that promotes its own activity suppresses the colon epithelial cell migration

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 640-648 | Received 01 Aug 2020, Accepted 10 Sep 2020, Published online: 28 Sep 2020

References

  • Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: molecular mechanisms of activation, free radic. Free Radic Biol Med. 2014;76:208–226.
  • Sumimoto H, Minakami R, Miyano K. Soluble regulatory proteins for activation of NOX family NADPH oxidases. Methods Mol Biol. 2019;1982:121–137.
  • Nauseef WM, Clark RA. Intersecting stories of the phagocyte NADPH oxidase and chronic granulomatous disease. Methods Mol Biol. 2019;1982:3–16.
  • Roos D. Chronic granulomatous disease. Br Med Bull. 2016;118(1):50–63.
  • Rokutan K, Kawahara T, Kuwano Y, et al. NADPH oxidases in the gastrointestinal tract: a potential role of Nox1 in innate immune response and carcinogenesis. Antioxid Redox Signal. 2006;8(9–10):1573–1582.
  • Sadok A, Bourgarel-Rey V, Gattacceca F, et al. Nox1-dependent superoxide production controls colon adenocarcinoma cell migration. Biochim Biophys Acta. 2008;1783(1):23–33.
  • Sadok A, Pierres A, Dahan L, et al. NADPH oxidase 1 controls the persistence of directed cell migration by a Rho-dependent switch of alpha2/alpha3 integrins. Mol Cell Biol. 2009;29(14):3915–3928.
  • Leoni G, Alam A, Neumann PA, et al. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest. 2013;123(1):443–454.
  • Alam A, Leoni G, Wentworth CC, et al. Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1. Mucosal Immunol. 2014;7(3):645–655.
  • Kwon J, Wang A, Burke DJ, et al. Peroxiredoxin 6 (Prdx6) supports NADPH oxidase1 (Nox1)-based superoxide generation and cell migration, free radic. Free Radic Biol Med. 2016;96:99–115.
  • Bánfi B, Clark RA, Steger K, et al. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem. 2003;278(6):3510–3513.
  • Geiszt M, Lekstrom K, Witta J, et al. Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem. 2003;278(22):20006–20012.
  • Takeya R, Ueno N, Kami K, et al. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem. 2003;278(27):25234–25246.
  • Cheng G, Lambeth JD. NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem. 2004;279(6):4737–4742.
  • Miyano K, Ueno N, Takeya R, et al. Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem. 2006;281(31):21857–21868.
  • Ueyama T, Geiszt M, Leto TL. Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol. 2006;26(6):2160–2174.
  • Cheng G, Diebold BA, Hughes Y, et al. Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem. 2006;281(26):17718–17726.
  • Miyano K, Sumimoto H. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases. Biochimie. 2007;89(9):1133–1144.
  • Abe S, Kirima K, Tsuchiya K, et al. The reaction rate of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186)) with hydroxyl radical. Chem Pharm Bull. 2004;52(2):186–191.
  • Shirley R, Ord EN, Work LM. Oxidative stress and the use of antioxidants in stroke. Antioxidants (Basel). 2014;3(3):472–501.
  • Kawai C, Yamauchi A, Kuribayashi F. Monoclonal antibody 7D5 recognizes the R147 epitope on the gp91phox , phagocyte flavocytochrome b558 large subunit. Microbiol Immunol. 2018;62(4):269–280.
  • Martyn KD, Frederick LM, von Loehneysen K, et al. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal. 2006;18(1):69–82.
  • Miyano K, Okamoto S, Yamauchi A, et al. The NADPH oxidase NOX4 promotes the directed migration of endothelial cells by stabilizing vascular endothelial growth factor receptor 2 protein. J Biol Chem. 2020;295(33):11877–11890.
  • Gianni D, Bohl B, Courtneidge SA, et al. The involvement of the tyrosine kinase c-Src in the regulation of reactive oxygen species generation mediated by NADPH oxidase-1. Mol Biol Cell. 2008;19(7):2984–2994.
  • Morini M, Benelli R, Giunciuglio D, et al. Kaposi’s sarcoma cells of different etiologic origins respond to HIV-Tat through the Flk-1/KDR (VEGFR-2): relevance in AIDS-KS pathology. Biochem Biophys Res Commun. 2000;273(1):267–271.
  • Miyano K, Sumimoto H. N-Linked glycosylation of the superoxide-producing NADPH oxidase Nox1. Biochem Biophys Res Commun. 2014;443(3):1060–1065.
  • Kiyohara T, Miyano K, Kamakura S, et al. Differential cell surface recruitment of the superoxide-producing NADPH oxidases Nox1, Nox2 and Nox5: the role of the small GTPase Sar1. Genes Cells. 2018;23(6):480–493.
  • Yamauchi A, Yamamura M, Katase N, et al. Evaluation of pancreatic cancer cell migration with multiple parameters in vitro by using an optical real-time cell mobility assay device. BMC Cancer. 2017;17(1):234.
  • Sancho P, Fabregat I. NADPH oxidase NOX1 controls autocrine growth of liver tumor cells through up-regulation of the epidermal growth factor receptor pathway. J Biol Chem. 2010;285(32):24815–24824.
  • Ortiz C, Caja L, Bertran E, et al. Protein-tyrosine phosphatase 1B (PTP1B) deficiency confers resistance to transforming growth factor-β (TGF-β)-induced suppressor effects in hepatocytes. J Biol Chem. 2012;287(19):15263–15274.
  • Weaver JR, Taylor-Fishwick DA. Regulation of NOX-1 expression in beta cells: a positive feedback loop involving the Src-kinase signaling pathway. Mol Cell Endocrinol. 2013;369(1–2):35–41.
  • Fisher AB. Redox signaling across cell membranes. Antioxid Redox Signal. 2009;11(6):1349–1356.
  • Matsumoto M, Katsuyama M, Iwata K, et al. Characterization of N-glycosylation sites on the extracellular domain of NOX1/NADPH oxidase, free radic. Free Radic Biol Med. 2014;68:196–204.
  • Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–421.
  • Streeter J, Schickling BM, Jiang S, et al. Phosphorylation of Nox1 regulates association with NoxA1 activation domain. Circ Res. 2014;115(11):911–918.
  • Gianni D, Taulet N, DerMardirossian C, et al. c-Src-mediated phosphorylation of NoxA1 and Tks4 induces the reactive oxygen species (ROS)-dependent formation of functional invadopodia in human colon cancer cells. Mol Biol Cell. 2010;21(23):4287–4298.
  • Efstathiou JA, Pignatelli M. Modulation of epithelial cell adhesion in gastrointestinal homeostasis. Am J Pathol. 1998;153(2):341–347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.