148
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Proportional coexistence of okanin chalcone glycoside and okanin flavanone glycoside in Bidens pilosa leaves and theoretical investigation on the antioxidant properties of their aglycones

, &
Pages 53-70 | Received 24 Sep 2020, Accepted 27 Nov 2020, Published online: 15 Dec 2020

References

  • Bartolome AP, Villaseñor IM, Yang WC. Bidens pilosa L. (Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based. Complement Altern Med. 2013;2013.
  • Gbashi S, Njobeh P, Steenkamp P, et al. Pressurized hot water extraction and chemometric fingerprinting of flavonoids from Bidens pilosa by UPLC-tandem mass spectrometry. CYTA-J Food. 2017;15(2):171–180.
  • Borges CC, Matos TF, Moreira J, et al. Bidens pilosa L (Asteraceae): traditional use in a community of southern Brazil. Rev Bras Plantas Med. 2013;15(1):34–40.
  • Zhang S. Treatment of 500 cases of dysentery with Bidens tripartite. Shandong J Tradit Chin Med. 1989;8:11–12.
  • Horiuchi M, Seyama Y. anti-inflammatory and anti-allergic activity of Bidens pilosa L. var. radiata scherff. J Health Sci. 2006;52(6):711–717.
  • Redl K, Breu W, Davis B, et al. Anti-inflammatory active polyacetylenes from Bidens campylotheca. Planta Med. 1994;60:58–62.
  • Silva FL, Fischer DCH, Tavares JF, et al. Compilation of secondary metabolites from Bidens pilosa L. Molecules. 2011;16:1070–1102.
  • Arthur GD, Naidoo KK, Coopoosamy RM. Bidens pilosa L: Agricultural and pharmaceutical importance. J Med Plants Res. 2012;6:3282–3287.
  • Chiang YM, Chuang DY, Wang SY, et al. Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. J Ethnopharmacol. 2004; 95:409–419.
  • Grombone-Guaratini MT, Silva-Brandão KL, Solferini VN, et al. Sesquiterpene and polyacetylene profile of the Bidens pilosa complex (Asteraceae: Heliantheae) from Southeast of Brazil. Biochem Syst Ecol. 2005;33(5):479–486.
  • Kviecinski MR, Felipe KB, Correia JFG, et al. Brazilian Bidens pilosa Linné yields fraction containing quercetin-derived flavonoid with free radical scavenger activity and hepatoprotective effects. Libyan J Med. 2011;6(1):5651.
  • Cortés-Rojas DF, Chagas-Paula DA, Da Costa FB, et al. Bioactive compounds in Bidens pilosa L populations: a key step in the standardization of phytopharmaceutical preparations. Brazilian J Pharmacogn. 2013;23(1):28–35.
  • Wang J, Yang H, Lin ZW, et al. Flavonoids from Bidens pilosa var radiata. Phytochem. 1997;46:1275–1278.
  • He F, Pan Y. Purification and characterization of chalcone isomerase from fresh-cut Chinese water-chestnut. LWT-Food Sci Technol. 2017;79:402–409.
  • Ramabulana T, Mavunda RD, Steenkamp PA, et al. Secondary metabolite perturbations in Phaseolus vulgaris leaves due to gamma radiation. Plant Physiol Biochem. 2015;97:287–295.
  • Ramabulana T, Mavunda RD, Steenkamp PA, et al. Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo-oxidative damages imposed by gamma radiation. J Photochem Photobiol B Biol. 2016;156:79–86.
  • Mekki BB, Orabi SA. Response of prickly oil lettuce (Lactuca scariola L.) to uniconazole and irrigation with diluted seawater. Am-Euras J Agric Environ Sci. 2007; 2:611–618.
  • Miller GN, Suzuki S, Ciftci-Yilmaz , Mittler R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ. 2009;33:453–467.
  • Suzuki N, Koussevitzky S, Mittler R, et al. ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35:259–270.
  • Makola MM, Madala NE, Dubery IA, Steenkamp PA, et al. Influence of the geometric isomers on the radical scavenging properties of 3, 5-dicaffeoylquinic acid: a DFT study in vacuo and in solution. J Theor Comput Chem. 2016;15:1–16.
  • Talalay P, Fahey JW. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr. 2001;131:3027S–3033S.
  • Dziedzic SZ, Hudson BJF. Polyhydroxy chalcones and flavanones as antioxidants for edible oils. Food Chem. 1983;12(3):205–212.
  • Chen LX, Hu DJ, Lam SC, et al. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2′-azinobis (3-ethylbenzthiazoline-sulfonic acid) diammonium salt-based assay. J Chromatogr A. 2016;1428:134–142.
  • Chen Z, Zheng S, Li L, et al. Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metabol. 2014;15:48–61.
  • Day AJ, Gee JM, DuPont MS, et al. Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol. 2003;65:1199–1206.
  • Leopoldini M, Marino T, Russo N, et al. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A. 2004;108(22):4916–4922.
  • Wright JS, Johnson ER, DiLabio GA. Predicting the activity of phenolic antioxidants: theoretical method analysis of substituent effects and application to major families of antioxidants. J Am Chem Soc. 2001;123:1173–1183.
  • Sadasivam K, Kumaresan R. A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds. Mol Phys. 2011;109(6):839–852.
  • Wang LF, Zhang HY. Unexpected role of 5-OH in DPPH radical-scavenging activity of 4-thiaflavans Revealed by theoretical calculations. Bioorganic Med Chem Lett. 2004;14:2609–2611.
  • Leopoldini M, Russo N, Chiodo S, et al. Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem. 2006;54:6343–6351.
  • Alcaro S, Chiodo SG, Leopoldini M, et al. Antioxidant efficiency of oxovitisin a new class of red wine pyranoanthocyanins revealed through quantum mechanical investigations. J Chem Inf Model. 2013;53:66–75.
  • Kabanda MM. Antioxidant activity of rooperol investigated through Cu (I and II) chelation ability and the hydrogen transfer mechanism: a DFT study. Chem Res Toxicol. 2012;25:2153–2166.
  • Andjelković M, Van Camp J, De Meulenaer B, et al. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006;98(1):23–31.
  • Kabanda MM, Tran VT, Seema KM, et al. Conformational electronic and antioxidant properties of lucidone, linderone and methyllinderone: DFT QTAIM and NBO studies. Mol Phys. 2015;113(7):683–697.
  • Tsiepe TJ, Kabanda MM, Serobatse KR. Antioxidant properties of kanakugiol revealed through the hydrogen atom transfer electron transfer and M2+ (M2+=Cu (II) or Co (II) Ion) coordination ability mechanisms A DFT study in vacuo and in solution. Food Biophys. 2015;10(3):342–359.
  • Serobatse KRN, Kabanda MM. A theoretical study on the antioxidant properties of methoxy-substituted chalcone derivatives: a case study of kanakugiol and pedicellin through their Fe (II and III) coordination ability. J Theor Comput Chem. 2016;15(06):1650048.
  • Sanchez W, Palluel O, Meunier L, et al. Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Env Toxicol Pharm. 2005;19:177–183.
  • Fuentealba I, Haywood S, Foster J. Cellular mechanisms of toxicity and tolerance in the copper-loaded rat. II. Pathogenesis of copper toxicity in the liver. Exp Mol Pathol. 1989;50:26–37.
  • Dai XL, Sun YX, Jiang ZF. Cu(II) potentiation of Alzheimer Aβ1- 40 cytotoxicity and transition on its secondary structure. Acta Biochim Biophys Sinica. 2006;38(11):765–772.
  • Sarell CJ. 2010. The copper-amyloid-beta-peptide complex of Alzheimer’s disease: affinity, structure, fibril formation and toxicity. London: University of London.
  • Kozlowski H, Luczkowski M, Remelli M, et al. Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and Prion diseases). Coord Chem Rev. 2012;256(19–20):2129–2141.
  • Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009;53:75–100.
  • Guo M, Perez C, Wei Y, et al. Iron-binding properties of plant phenolics and cranberry's bio-effects. Dalton Trans. 2007;(43):4951–4961.
  • Perron NR, Hodges JN, Jenkins M, et al. Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorg Chem. 2008;47(14):6153–6161.
  • Mammino L, Kabanda MM. Model structures for the study of acylated phloroglucinols and computational study of the caespitate molecule. J Mol Struct Theochem. 2007;805(1–3):39–52.
  • Mammino L, Kabanda MM. Computational study of nodifloridin-A and nodiflorifin-B with highlight on the peculiarities of acylated phloroglucinol derivatives. In WSEAS International Conference Proceedings, recent advances in biology and biomedicine (No. 5) WSEAS. WSEAS Trans Biol Biomed. 2009;6:58–63.
  • Mwangi HM, Van Der Westhuizen J, Marnewick J, et al. Isolation identification and radical scavenging activity of phlorotannin derivatives from brown algae Ecklonia maxima: an experimental and theoretical study. Free Radical Antioxidant. 2013;3:S1–S10.
  • Kabanda MM, Mammino L, Murulana LC, et al. Antioxidant radical scavenging properties of phenolic pent-4-en-1-yne derivatives isolated from Hypoxis rooperi. A DFT study in vacuo and in solution. Int J Food Prop. 2015;18(1):149–164.
  • Khoza BS, Chimuka L, Mukwevho E, et al. The effect of temperature on pressurised hot water extraction of pharmacologically-important metabolites as analyzed by UPLC-qTOF-MS and PCA. Evidence Based Complement Altern Med. 2014;2014.
  • DNP Dictionary of Natural Products. 2018 [cited 2018 Jan 23]. Available from: http://dnpchemnetbasecom/dictionary-searchdojsessionid=A9890698699B3BE33D7EEAB7ECEBF3B7?method=view&id=11497129&si=
  • Santos JLF, Kauffmann AC, da Silva SC, et al. Probing structural properties and antioxidant activity mechanisms for eleocarpanthraquinone. J Mol Model. 2020;26:233.
  • Mendes RA, Almeida SKC, Soares LN, et al. Evaluation of the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside and myricetin 4'-O-α-L-rhamnopyranoside through a computational study. J Mol Model. 2019;25:89.
  • Maciel EN, Soares LN, da Silva SC, et al. A computational study on the reaction between fisetin and 2,2-diphenyl-1-picrylhydrazyl (DPPH). J Mol Model. 2019;25:103.
  • Mendes RA, Silva BLS, Takeara R, et al. Probing the antioxidant potential of phloretin and phlorizin through a computational investigation. J Mol Model. 2018;24:101.
  • Mendes RA, Almeida SKC, Soares LN, et al. computational investigation on the antioxidant potential of myricetin 3,4_-di-O-α-L–rhamnopyranoside. J Mol Model. 2018;24:133.
  • Maciel EN, Almeida SKC, da Silva SC, et al. Examining the reaction between antioxidant compounds and 2,2-diphenyl-1-picrylhydrazyl (DPPH) through a computational investigation. J Mol Model. 2018;24:218.
  • Puškárová I, Breza M. DFT studies of the effectiveness of p-phenylenediamine antioxidants through their Cu(II) coordination ability. Polym Degrad. 2016;128:15–21.
  • Puškárová I, Breza M. DFT studies of the effectiveness of p-substituted diphenyl amine antioxidants in styrene-butadiene rubber through their Cu(II) coordination ability. Chem Phys Lett. 2017;680:78–82.
  • Poater J, Solá M, Rimola A, Rodríguez-Santiago L, et al. Ground and low-lying states of Cu2+−H2O. A difficult case for density functional methods. J Phys Chem A. 2004;108(28):6072–6078.
  • Lamsabhi AM, Alcamí M, Mó O, et al. Gas-phase deprotonation of uracil–Cu2+ and thiouracil–Cu2+ complexes. J Phys Chem A. 2006;110(5):1943–1950.
  • Lamsabhi AM, Alcami M, Mo O, et al. Gas-phase reactivity of uracil, 2-thiouracil, 4-thiouracil, and 2, 4-dithiouracil towards the Cu+ cation: a DFT study. ChemPhysChem. 2003;4:1011–1016.
  • Lamsabhi AM, Alcami M, Mo O, et al. Unimolecular reactivity of uracil–Cu(2+) complexes in the gas phase. ChemPhysChem. 2007;8:181–187.
  • Lamsabhi AM, Alcami M, Mo O, et al. Association of Cu2+ with uracil and its thio derivatives: a theoretical study. ChemPhysChem. 2004;5:1871–1878.
  • Jelemenská I, Breza M. Comparative DFT study of the effectiveness of p-phenylenediamine antioxidants through their coordination ability towards the late 1st row transition metals. Polym Degrad Stab. 2020:109438.
  • Kabanda MM. A theoretical study of the antioxidant properties of phenolic acid amides through the radical scavenging and metal chelation mechanisms. Eur Food Res Technol. 2015;241(4):553–572.
  • Alagona G, Ghio C. Antioxidant properties of pterocarpans through their copper (II) coordination ability. A DFT study in vacuo and in aqueous solution. J Phys Chem A. 2009;113:15206–15216.
  • Alagona G, Ghio C. Plicatin B. Conformational landscape and affinity to copper (I and II) metal cations. A DFT study. Phys Chem Chem Phys. 2009;11:776–790.
  • Cundari TR, Leza HAR, Grimes T, et al. Calculation of the enthalpies of formation for transition metal complexes. Chem Phys Lett. 2005;401(1–3):58–61.
  • Mori H, Zeng T, Klobukowski M. Assessment of chemical core potentials for the computation on enthalpies of formation of transition-metal complexes. Chem Phys Lett. 2012;521:150–156.
  • Yang Y, Weaver MN, Merz KM. Jr Assessment of the “6-31 + G** + LANL2DZ” mixed basis set coupled with density functional theory methods and the effective core potential: Prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. J Phys Chem A. 2009;113:9843–9851.
  • Mammino L. Investigation of the antioxidant properties of hyperjovinol A through its Cu(II) coordination ability. J Mol Model. 2013;19:2127–2142.
  • Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113:6378–6396.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, revision B01. Wallingford (CT): Gaussian Inc.; 2009.
  • Foster JP, Reed AE, Carpenter JE, et al. Natural hybrid orbitals. J Am Chem Soc. 1980;102(24):7211–7218.
  • Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83(2):735–746.
  • Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital donor-acceptor viewpoint. Chem Rev. 1988;88(6):899–926.
  • Hoffmann B, Hölzl J. A methylated chalcone glucoside from Bidens pilosa. Phytochem. 1988;27(11):3700–37001.
  • Harborne JB, Baxter H. 1999. The handbook of natural flavonoids. Vol. 2, 2nd ed. West Sussex, England: Wiley; pp 115.
  • Ralston L, Subramanian S, Matsuno M, et al. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases1[w]. Plant Physiol. 2005;137:1375–1388.
  • Liang X, Xu Q. Separation and identification of phenolic compounds in Bidens pilosa L. by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci. 2016;39:1853–1862.
  • Yang B, Kotani A, Arai K, et al. Estimation of the antioxidant activities of flavonoids from their oxidation potentials. Anal Sci. 2001;17:599–604.
  • Piao MJ, Kim KC, Chae S, et al. Protective effect of fisetin (3 7 3’ 4’-tetrahydroxyflavone) against γ-irradiation-induced oxidative stress and cell damage. Biomol Ther. 2013;21:210–215.
  • Makita H, Tanaka T, Fujitsuka H, et al. Chemoprevention of 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis by the dietary flavonoids chalcone 2-hydroxychalcone and quercetin. Cancer Res. 1996;56:4904–4909.
  • Cushnie TT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26:343–356.
  • Mammino L, Kabanda MM. Interplay of intramolecular hydrogen bonds OH orientations and symmetry factors in the stabilization of polyhydroxybenzenes. Int J Quantum Chem. 2011;111:3701–3716.
  • Mammino L, Kabanda MM. Adducts of acylphloroglucinols with explicit water molecules: similarities and differences across a sufficiently representative number of structures. Int J Quantum Chem. 2010;110:2378–2390.
  • Kabanda MM, Mammino L. The conformational preferences of acylphloroglucinols—a promising class of biologically active compounds. Int J Quantum Chem. 2012;112(23):3691–3702.
  • Mammino L, Kabanda MM. A computational study of the carboxylic acid of phloroglucinol in vacuo and in water solution. Int J Quantum Chem. 2010;110(3):595–623.
  • Mammino L, Kabanda MM. The geometric isomers of caespitate: a computational study in vacuo and in solution. J Med Biol Eng. 2012;1:114–133.
  • Serobatse KR, Kabanda MM. Antioxidant and antimalarial properties of butein and homobutein based on their ability to chelate iron (II and III) cations: a DFT study in vacuo and in solution. Eur Food Res Technol. 2016;242(1):71–90.
  • Lucarini M, Pedulli GF, Cipollone M. Bond dissociation enthalpy of alpha-tocopherol and other phenolic antioxidants. J Org Chem. 1994;59(17):5063–5070.
  • Chen Y, Xiao H, Zheng J, et al. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. PLOS One. 2015; 10:e0121276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.