429
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Gasotransmitter signaling in energy homeostasis and metabolic disorders

ORCID Icon, ORCID Icon, &
Pages 83-105 | Received 25 Jun 2020, Accepted 08 Dec 2020, Published online: 23 Dec 2020

References

  • Carné-Sánchez A, Carmona FJ, Kim C, et al. Porous materials as carriers of gasotransmitters towards gas biology and therapeutic applications. Chem Commun. 2020;56(68):9750–9766.
  • Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92(2):791–896.
  • Li H, Hao YH, Feng W, et al. Rapid and sensitive detection of nitric oxide by a BODIPY-based fluorescent probe in live cells: glutathione effects. J Mater Chem B. 2020;8(42):9785–9793.
  • Sato M, Hida N, Umezawa Y. Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells. Proc Natl Acad Sci USA. 2005;102(41):14515–14520.
  • Lee Y, Kim J. Simultaneous electrochemical detection of nitric oxide and carbon monoxide generated from mouse kidney organ tissues. Anal Chem. 2007;79(20):7669–7675.
  • Balbatun A, Louka FR, Malinski T. Dynamics of nitric oxide release in the cardiovascular system. Acta Biochim Pol. 2003;50(1):61–68.
  • Kalinowski L, Dobrucki IT, Malinski T. Cicletanine stimulates nitric oxide release and scavenges superoxide in endothelial cells. J Cardiovasc Pharmacol. 2001;37(6):713–724.
  • Kilinc E, Yetik G, Dalbasti T, et al. Comparison of electrochemical detection of acetylcholine-induced nitric oxide release (NO) and contractile force measurement of rabbit isolated carotid artery endothelium. J Pharm Biomed Anal. 2002;28(2):345–354.
  • Buerk DG, Ances BM, Greenberg JH, et al. Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats. Neuroimage. 2003;18(1):1–9.
  • Lowe G, Buerk DG, Ma J, et al. Tonic and stimulus-evoked nitric oxide production in the mouse olfactory bulb. Neuroscience. 2008;153(3):842–850.
  • Malinski T, Bailey F, Zhang ZG, et al. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1993;13(3):355–358.
  • Thomas DD. Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 2015;5:225–233.
  • Vreman HJ, Wong RJ, Kadotani T, et al. Determination of carbon monoxide (CO) in rodent tissue: effect of heme administration and environmental CO exposure. Anal Biochem. 2005;341(2):280–289.
  • Moustafa A. Changes in nitric oxide, carbon monoxide, hydrogen sulfide and male reproductive hormones in response to chronic restraint stress in rats. Free Radic Biol Med. 2020;5849(20):31589.
  • Olson KR. Is hydrogen sulfide a circulating “gasotransmitter” in vertebrate blood? Biochim Biophys Acta. 2009;1787(7):856–886.
  • Srilatha B, Lingxu H, Adaikan GP, et al. Initial characterization of hydrogen sulfide effects in female sexual function. J Sex Med. 2009;6(7):1875–1884.
  • Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001;20(21):6008–6016.
  • Karunya R, Jayaprakash KS, Gaikwad R, et al. Rapid measurement of hydrogen sulphide in human blood plasma using a microfluidic method. Sci Rep. 2019;9(1):3258.
  • Warenycia MW, Goodwin LR, Benishin CG, et al. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol. 1989;38(6):973–981.
  • Yusuf M, Kwong Huat BT, Hsu A, et al. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem Biophys Res Commun. 2005;333(4):1146–1152.
  • Koike S, Kawamura K, Kimura Y, et al. Analysis of endogenous H2S and H2Sn in mouse brain by high-performance liquid chromatography with fluorescence and tandem mass spectrometric detection. Free Radic Biol Med. 2017;113:355–362.
  • Ji Y, Xia LJ, Chen L, et al. A novel BODIPY-based fluorescent probe for selective detection of hydrogen sulfide in living cells and tissues. Talanta. 2018;181:104–111.
  • Zhang X, Qu W, Liu H, et al. Visualizing hydrogen sulfide in living cells and zebrafish using a red-emitting fluorescent probe via selenium-sulfur exchange reaction. Anal Chim Acta. 2020;1109:37–43.
  • Tomasova L, Konopelski P, Ufnal M. Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules. 2016;21(11):1558.
  • Rose P, Moore PK, Ming SH, et al. Hydrogen sulfide protects colon cancer cells from chemopreventative agent beta-phenylethyl isothiocyanate induced apoptosis. World J Gastroenterol. 2005;11(26):3990–3997.
  • Cao Q, Zhang L, Yang G, et al. Butyrate-stimulated H2S production in colon cancer cells. Antioxid Redox Signal. 2010;12(9):1101–1109.
  • Huc T, Jurkowska H, Wróbel M, et al. Colonic hydrogen sulfide produces portal hypertension and systemic hypotension in rats. Exp Biol Med. 2018;243(1):96–106.
  • Stuehr DJ. Enzymes of the L-arginine to nitric oxide pathway. J Nutr. 2004;134(10):2748S–2751S.
  • Hu G, Ito O, Rong R, et al. Pitavastatin upregulates nitric oxide synthases in the kidney of spontaneously hypertensive rats and wistar-kyoto rats. Am J Hypertens. 2018;31(10):1139–1146.
  • Long MH, Zhu XM, Wang Q, et al. PM2.5 exposure induces vascular dysfunction via NO generated by iNOS in lung of ApoE-/- mouse. Int J Biol Sci. 2020;16(1):49–60.
  • Xu W, Charles IG, Liu L, et al. Molecular genetic analysis of the duplication of human inducible nitric oxide synthase (NOS2) sequences. Biochem Biophys Res Commun. 1995;212(2):466–472.
  • McCarthy O, Moser O, Eckstein ML, et al. Supplementary nitric oxide donors and exercise as potential means to improve vascular health in people with type 1 diabetes: yes to no? Nutrients. 2019;11(7):1571.
  • Onyema OO, Guo Y, Wang Q, et al. Eosinophils promote inducible NOS-mediated lung allograft acceptance. JCI Insight. 2017;2(24):e96455.
  • Hannibal L. Nitric oxide homeostasis in neurodegenerative diseases. Curr Alzheimer Res. 2016;13(2):135–149.
  • Girouard J, Belgorosky D, Hamelin-Morrissette J, et al. Molecular therapy with derivatives of amino benzoic acid inhibits tumor growth and metastasis in murine models of bladder cancer through inhibition of TNFα/NFΚB and iNOS/NO pathways. Biochem Pharmacol. 2020;176:113778.
  • Barinaga M. Carbon monoxide: killer to brain messenger in one step. Science. 1993;259(5093):309.
  • Stolt C, Schmidt IH, Sayfart Y, et al. Heme oxygenase-1 and carbon monoxide promote Burkholderia pseudomallei infection. J Immunol. 2016;197(3):834–846.
  • Hettiarachchi NT, Boyle JP, Dallas ML, et al. Heme oxygenase-1 derived carbon monoxide suppresses Aβ1-42 toxicity in astrocytes. Cell Death Dis. 2017;8(6):e2884.
  • Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50:323–354.
  • Ndisang JF, Wu L, Zhao W, et al. Induction of heme oxygenase-1 and stimulation of cGMP production by hemin in aortic tissues from hypertensive rats. Blood. 2003;101(10):3893–3900.
  • Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86(2):583–650.
  • Wang R, Wang Z, Wu L, et al. Reduced vasorelaxant effect of carbon monoxide in diabetes and the underlying mechanisms. Diabetes. 2001;50(1):166–174.
  • Jung TW, Kim HC, Abd El-Aty AM, et al. Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress. Cell Signal. 2017;34:133–140.
  • Chiku T, Padovani D, Zhu W, et al. H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem. 2009;284(17):11601–11612.
  • Prieto-Lloret J, Aaronson PI. Potentiation of Hypoxic Pulmonary Vasoconstriction by Hydrogen Sulfide Precursors 3-Mercaptopyruvate and D-Cysteine Is Blocked by the Cystathionine γ Lyase Inhibitor Propargylglycine. Adv Exp Med Biol. 2015;860:81–87.
  • Untereiner AA, Oláh G, Módis K, et al. H2S-induced S-sulfhydration of lactate dehydrogenase a (LDHA) stimulates cellular bioenergetics in HCT116 colon cancer cells. Biochem Pharmacol. 2017;136:86–98.
  • Vicente JB, Malagrinò F, Arese M, et al. Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine β-synthase. Biochim Biophys Acta. 2016;1857(8):1127–1138.
  • Nasi S, Ehirchiou D, Chatzianastasiou A, et al. The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway against experimental osteoarthritis. Arthritis Res Ther. 2020;22(1):49.
  • Szabo C, Papapetropoulos A. International union of basic and clinical pharmacology. CII: pharmacological modulation of H2S levels: H2S donors and H2S biosynthesis inhibitors. Pharmacol Rev. 2017;69(4):497–564.
  • Zheng F, Han J, Lu H, et al. Cystathionine beta synthase-hydrogen sulfide system in paraventricular nucleus reduced high fatty diet induced obesity and insulin resistance by brain-adipose axis. Biochim Biophys Acta Mol Basis Dis. 2018;1864(10):3281–3291.
  • Korhonen R, Lahti A, Kankaanranta H, et al. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(4):471–479.
  • Miller MR, Megson IL. Recent developments in nitric oxide donor drugs. Br J Pharmacol. 2007;151(3):305–321.
  • Zhou Y, Gaucher C, Fries I, et al. Challenging development of storable particles for oral delivery of a physiological nitric oxide donor. Nitric Oxide. 2020;104–105:1–10.
  • Hrabie JA, Keefer LK. Chemistry of the nitric oxide-releasing diazeniumdiolate (“nitrosohydroxylamine”) functional group and its oxygen-substituted derivatives. Chem Rev. 2002;102(4):1135–1154.
  • Ding Z, He K, Duan Y, et al. Photo-degradable micelles for co-delivery of nitric oxide and doxorubicin. J Mater Chem B. 2020;8(31):7009–7017.
  • Paulo M, Costa DEFR, Bonaventura D, et al. Nitric oxide donors as potential drugs for the treatment of vascular diseases due to endothelium dysfunction. Curr Pharm Des. 2020;26(30):3748–3759.
  • Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989;2(8670):997–1000.
  • Wils J, Djerada Z, Roca F, et al. Alteration in the availability of epoxyeicosatrienoic acids contributes with NO to the development of endothelial dysfunction in conduit arteries during aging. Atherosclerosis. 2018;275:239–245.
  • McGarr GW, Fujii N, McNeely BD, et al. Superoxide and NADPH oxidase do not modulate skin blood flow in older exercising adults with and without type 2 diabetes. Microvasc Res. 2019;125:103886.
  • Wang J, Sun J, Qiao S, et al. Effects of isoflurane on complex II-associated mitochondrial respiration and reactive oxygen species production: roles of nitric oxide and mitochondrial KATP channels. Mol Med Rep. 2019;20(5):4383–4390.
  • Adach W, Olas B. Carbon monoxide and its donors - their implications for medicine. Future Med Chem. 2019;11(1):61–73.
  • Faizan M, Niazi KUK, Muhammad N, et al. The intercalation of CORM-2 with pharmaceutical clay montmorillonite (MMT) aids for therapeutic carbon monoxide release. Int J Mol Sci. 2019;20(14):3453.
  • Kim DK, Shin SJ, Lee J, et al. Carbon monoxide-releasing molecule-3: Amelioration of renal ischemia reperfusion injury in a rat model. Investig Clin Urol. 2020;61(4):441–451.
  • Romao C, Blattler W, Seixas J, et al. Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev. 2012;41(9):3571–3583.
  • Park J, Joe Y, Ryter SW, et al. Similarities and distinctions in the effects of metformin and carbon monoxide in immunometabolism. Mol Cells. 2019;42(4):292–300.
  • Motterlini R, Sawle P, Hammad J, et al. CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J. 2005;19(2):284–286.
  • Zhang LM, Zhang DX, Fu L, et al. Carbon monoxide-releasing molecule-3 protects against cortical pyroptosis induced by hemorrhagic shock and resuscitation via mitochondrial regulation. Free Radic Biol Med. 2019;141:299–309.
  • Di Biase S, Lee C, Brandhorst S, et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell. 2016;30(1):136–146.
  • Wedn AM, El-Gowilly SM, El-Mas MM. The α7-nAChR/heme oxygenase-1/carbon monoxide pathway mediates the nicotine counteraction of renal inflammation and vasoconstrictor hyporeactivity in endotoxic male rats. Inflamm Res. 2020;69(2):217–231.
  • Caliendo G, Cirino G, Santagada V, et al. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J Med Chem. 2010;53(17):6275–6286.
  • Levinn CM, Cerda MM, Pluth MD. Activatable small-molecule hydrogen sulfide donors. Antioxid Redox Signal. 2020;32(2):96–109.
  • Li L, Whiteman M, Guan Y, et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation. 2008;117(18):2351–2360.
  • Polhemus DJ, Li Z, Pattillo CB, et al. A novel hydrogen sulfide prodrug, SG1002, promotes hydrogen sulfide and nitric oxide bioavailability in heart failure patients. Cardiovasc Ther. 2015;33(4):216–226.
  • Chatzianastasiou A, Bibli SI, Andreadou I, et al. Cardioprotection by H2S donors: nitric oxide-dependent and -independent mechanisms. J Pharmacol Exp Ther. 2016;358(3):431–440.
  • Bucci M, Vellecco V, Cantalupo A, et al. Hydrogen sulfide accounts for the peripheral vascular effects of zofenopril independently of ACE inhibition. Cardiovasc Res. 2014;102(1):138–147.
  • Tsai CY, Peh MT, Feng W, et al. Hydrogen sulfide promotes adipogenesis in 3T3L1 cells. PLoS One. 2015;10(3):e0119511.
  • Augsburger F, Randi EB, Jendly M, et al. Role of 3-mercaptopyruvate sulfurtransferase in the regulation of proliferation, migration, and bioenergetics in murine colon cancer cells. Biomolecules. 2020;10(3):447.
  • Asimakopoulou A, Panopoulos P, Chasapis CT, et al. Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br J Pharmacol. 2013;169(4):922–932.
  • Hanaoka K, Sasakura K, Suwanai Y, et al. Discovery and mechanistic characterization of selective inhibitors of H2S-producing enzyme: 3-mercaptopyruvate sulfurtransferase (3MST) targeting active-site cysteine persulfide. Sci Rep. 2017;7:40227.
  • Coletta C, Papapetropoulos A, Erdelyi K, et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA. 2012;109(23):9161–9166.
  • Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763.
  • Gonçalves DA, Xisto R, Gonçalves JD, et al. Imbalance between nitric oxide and superoxide anion induced by uncoupled nitric oxide synthase contributes to human melanoma development. Int J Biochem Cell Biol. 2019;115:105592.
  • Gow J, Yang Y, Govindraj M, et al. Nitric oxide regulates macrophage fungicidal activity via S-nitrosylation of dectin-1. Appl in Vitro Toxicol. 2020;6(3):90–98.
  • Stamler JS, Lamas JS, Fang FC. Nitrosylation: the prototypic redox-based signaling mechanism. Cell. 2001;106(6):675–683.
  • Irie T, Sips PY, Kai S, et al. S-Nitrosylation of calcium-handling proteins in cardiac adrenergic signaling and hypertrophy. Circ Res. 2015;117(9):793–803.
  • Van Rooyen LA, Allen P, O’Connor DI. Effect of muscle type and CO-pretreatment combinations on the colour stability, protein oxidation and shelf-life of vacuum packaged beef steaks. Meat Sci. 2018;145:407–414.
  • Mustafa A, Gadalla M, Sen N, et al. H2S signals through protein S-sulfhydration. Sci Signal. 2009;2(96):ra72.
  • Yang G, Zhao K, Ju Y, et al. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal. 2013;18(15):1906–1919.
  • Peng H, Zhang Y, Palmer LD, et al. Hydrogen sulfide and reactive sulfur species impact proteome S-Sulfhydration and global virulence regulation in Staphylococcus aureus. ACS Infect Dis. 2017;3(10):744–755.
  • Sen N, Paul BD, Gadalla MM, et al. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell. 2012;45(1):13–24.
  • Zivanovic J, Kouroussis E, Kohl JB, et al. Selective persulfide detection reveals evolutionarily conserved antiaging effects of S-sulfhydration. Cell Metab. 2019;30(6):1152–1170.
  • Narne P, Pandey V, Phanithi PB. Role of nitric oxide and hydrogen sulfide in ischemic stroke and the emergent epigenetic underpinnings. Mol Neurobiol. 2019;56(3):1749–1769.
  • Colussi C, Mozzetta C, Gurtner A, et al. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci USA. 2008;105(49):19183–19187.
  • Illi B, Dello Russo C, Colussi C, et al. Nitric oxide modulates chromatin folding in human endothelial cells via protein phosphatase 2A activation and class II histone deacetylases nuclear shuttling. Circ Res. 2008;102(1):51–58.
  • Li M, Gallo D, Csizmadia E, et al. Carbon monoxide induces chromatin remodelling to facilitate endothelial cell migration. Thromb Haemost. 2014;111(5):951–959.
  • Leucker TM, Nomura Y, Kim JH, et al. Cystathionine γ-lyase protects vascular endothelium: a role for inhibition of histone deacetylase 6. Am J Physiol Heart Circ Physiol. 2017;312(4):H711–H720.
  • Bai YP, Zhang JX, Sun A, et al. Induction of microRNA-199 by nitric oxide in endothelial cells is required for nitrovasodilator resistance via targeting of prostaglandin I2 synthase. Circulation. 2018;138(4):397–411.
  • Lee YE, Hong CY, Lin YL, et al. MicroRNA-1 participates in nitric oxide-induced apoptotic insults to MC3T3-E1 cells by targeting heat-shock protein-70. Int J Biol Sci. 2015;11(3):246–255.
  • Choi S, Kim J, Kim JH, et al. Carbon monoxide prevents TNF-α-induced eNOS downregulation by inhibiting NF-κB-responsive miR-155-5p biogenesis. Exp Mol Med. 2017;49(11):e403.
  • Kim HJ, Joe Y, Yu JK, et al. Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochim Biophys Acta. 2015;1852(7):1550–1559.
  • Zhai Y, Tyagi SC, Tyagi N. Cross-talk of microRNA and hydrogen sulfide: a novel therapeutic approach for bone diseases. Biomed Pharmacother. 2017;92:1073–1084.
  • Hancock JT, Whiteman M. Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. Ann NY Acad Sci. 2016;1365(1):5–14.
  • Sun J, Steenbergen C, Murphy E. S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal. 2006;8(9–10):1693–1705.
  • Whiteman M, Li L, Kostetski I, et al. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun. 2006;343(1):303–310.
  • Filipovic MR, Eberhardt M, Prokopovic V, et al. Beyond H2S and NO interplay: hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO. J Med Chem. 2013;56(4):1499–1508.
  • Lin EQ, Irvine JC, Cao AH, et al. Nitroxyl (HNO) stimulates soluble guanylyl cyclase to suppress cardiomyocyte hypertrophy and superoxide generation. PLoS One. 2012;7(4):e34892.
  • Yong QC, Hu LF, Wang S, et al. Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc Res. 2010;88(3):482–491.
  • Chiueh CC, Rauhala P. The redox pathway of S-nitrosoglutathione, glutathione and nitric oxide in cell to neuron communications. Free Radic Res. 1999;31(6):641–650.
  • Sengupta R, Holmgren A. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid Redox Signal. 2013;18(3):259–269.
  • Pong WW, Eldred WB. Interactions of the gaseous neuromodulators nitric oxide, carbon monoxide, and hydrogen sulfide in the salamander retina. J Neurosci Res. 2009;87(10):2356–2364.
  • Guo SB, Duan ZJ, Wang QM, et al. Endogenous carbon monoxide downregulates hepatic cystathionine-γ-lyase in rats with liver cirrhosis. Exp Ther Med. 2015;10(6):2039–2046.
  • Kolluru GK, Shen X, Kevil CG. A tale of two gases: NO and H2S, foes or friends for life? Redox Biol. 2013;1:313–318.
  • Meyer G, André L, Kleindienst A, et al. Carbon monoxide increases inducible NOS expression that mediates CO-induced myocardial damage during ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2015;308(7):H759–H767.
  • Wen C, Li F, Zhang L, et al. Taurine is involved in energy metabolism in muscles, adipose tissue, and the liver. Mol Nutr Food Res. 2019;63(2):e1800536.
  • Seo AY, Joseph AM, Dutta D, et al. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci. 2010;123(15):2533–2542.
  • Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93(4):884S.
  • Acosta MJ, Fonseca LV, Desbats MA, et al. Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta. 2016;1857(8):1079–1085.
  • Braymer JJ, Lill R. Iron-sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem. 2017;292(31):12754–12763.
  • Timón-Gómez A, Nývltová E, Abriata LA, et al. Mitochondrial cytochrome c oxidase biogenesis: recent developments. Semin Cell Dev Biol. 2018;76:163–178.
  • Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem. 1998;273(18):11038–11043.
  • Bombicino SS, Iglesias DE, Rukavina-Mikusic IA, et al. Hydrogen peroxide, nitric oxide and ATP are molecules involved in cardiac mitochondrial biogenesis in Diabetes. Free Radic Biol Med. 2017;112:267–276.
  • Nisoli E, Regianini L, Bulbarelli A, et al. Protective effects of noradrenaline against tumor necrosis factor-alpha-induced apoptosis in cultured rat brown adipocytes: role of nitric oxide-induced heat shock protein 70 expression. Int J Obes Relat Metab Disord. 2001;25(10):1421–1430.
  • Nisoli E, Clementi E, Paolucci C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003;299(5608):896–899.
  • Nisoli E, Falcone S, Tonello C, et al. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA. 2004;101(47):16507–16512.
  • Wolzt M, MacAllister RJ, Davis D, et al. Biochemical characterization of S-nitrosohemoglobin. Mechanisms underlying synthesis, no release, and biological activity. J Biol Chem. 1999;274(41):28983–28990.
  • Clementi E, Brown GC, Foxwell N, et al. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci USA. 1999;96(4):1559–1562.
  • Li C, Reif MM, Craige SM, et al. Endothelial AMPK activation induces mitochondrial biogenesis and stress adaptation via eNOS-dependent mTORC1 signaling. Nitric Oxide. 2016;55–56:45–53.
  • Suliman HB, Piantadosi CA. Mitochondrial quality control as a therapeutic target. Pharmacol Rev. 2016;68(1):20–48.
  • Wang R. Gasotransmitters: growing pains and joys. Trends Biochem Sci. 2014;39(5):227–232.
  • Bilban M, Haschemi A, Wegiel B, et al. Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med. 2008;86(3):267–279.
  • Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9(9):728–743.
  • Lancel S, Montaigne D, Marechal X, et al. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS One. 2012;7(8):e41836.
  • Oliveira SR, Queiroga CS, Vieira HL. Mitochondria and carbon monoxide: cytoprotection and control of cell metabolism - a role for Ca2+? J Physiol. 2016;594(15):4131–4138.
  • Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med. 2012;53(11):2043–2053.
  • Suliman HB, Carraway MS, Ali AS, et al. The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J Clin Invest. 2007;117(12):3730–3741.
  • Suliman HB, Carraway MS, Tatro LG, et al. A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci. 2007;120(2):299–308.
  • Lancel S, Hassoun SM, Favory R, et al. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther. 2009;329(2):641–648.
  • MacGarvey NC, Suliman HB, Bartz RR, et al. Activation of mitochondrial biogenesis by heme oxygenase-1-mediated NF-E2-related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis. Am J Respir Crit Care Med. 2012;185(8):851–861.
  • Cherry AD, Piantadosi CA. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses. Antioxid Redox Signal. 2015;22(12):965–976.
  • Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J. 2019;33(12):13098–13125.
  • Nicholls P, Marshall DC, Cooper CE, et al. Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans. 2013;41(5):1312–1316.
  • Módis K, Ju YJ, Ahmad A, et al. S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res. 2016;113(A):116–124.
  • Libiad M, Vitvitsky V, Bostelaar T, et al. Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem. 2019;294(32):12077–12090.
  • Li S, Yang G. Hydrogen sulfide maintains mitochondrial DNA replication via demethylation of TFAM. Antioxid Redox Signal. 2015;23(7):630–642.
  • Untereiner AA, Fu M, Módis K, et al. The stimulatory effect of CSE-generated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric Oxide. 2016;58:67–76.
  • Calvert JW, Elston M, Nicholson CK, et al. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation. 2010;122(1):11–19.
  • Shimizu Y, Polavarapu R, Eskla K, et al. Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol. 2018;116:29–40.
  • Andreadou I, Schulz R, Papapetropoulos A, et al. The role of mitochondrial reactive oxygen species, NO and H2S in ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med. 2020;24(12):6510–6522.
  • Xie ZZ, Shi MM, Xie L, et al. Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid Redox Signal. 2014;21(18):2531–2542.
  • Sinha BK, Kumar A, Mason RP. Nitric oxide inhibits ATPase activity and induces resistance to topoisomerase II-poisons in human MCF-7 breast tumor cells. Biochem Biophys Rep. 2017;10:252–259.
  • Borutaite V, Budriunaite A, Brown GC. Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim Biophys Acta. 2000;1459(2–3):405–412.
  • Bailey JD, Diotallevi M, Nicol T, et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019;28(1):218–230.
  • Poderoso JJ, Helfenberger K, Poderoso C. The effect of nitric oxide on mitochondrial respiration. Nitric Oxide. 2019;88:61–72.
  • Moon Y, Balke JE, Madorma D, et al. Nitric oxide regulates skeletal muscle fatigue, fiber type, microtubule organization, and mitochondrial ATP synthesis efficiency through cGMP-dependent mechanisms. Antioxid Redox Signal. 2017;26(17):966–985.
  • Chin BY, Jiang G, Wegiel B, et al. Hypoxia-inducible factor 1alpha stabilization by carbon monoxide results in cytoprotective preconditioning. Proc Natl Acad Sci USA. 2007;104(12):5109–5114.
  • Fukuda R, Zhang H, Kim JW, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007;129(1):111–122.
  • Alonso JR, Cardellach F, López S, et al. Carbon monoxide specifically inhibits cytochrome C oxidase of the human mitochondrial respiratory chain. Pharmacol Toxicol. 2003;93(3):142–146.
  • Almeida AS. Carbon monoxide modulates apoptosis by reinforcing oxidative metabolism in astrocytes: role of Bcl-2. J Biol Chem. 2012;6:2780.
  • Queiroga CSF, Almeida AS, Martel C, et al. Carbon monoxide prevents hepatic mitochondrial membrane permeabilization. BMC Cell Biol. 2011;12:10.
  • Almeida AS, Figueiredo-Pereira C, Vieira HL. Carbon monoxide and mitochondria-modulation of cell metabolism, redox response and cell death. Front Physiol. 2015;6:33–34.
  • Stucki D, Steinhausen J, Westhoff P, et al. Endogenous carbon monoxide signaling modulates mitochondrial function and intracellular glucose utilization: impact of the heme oxygenase substrate hemin. Antioxidants. 2020;9(8):652.
  • Teng H, Wu B, Zhao K, et al. Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc Natl Acad Sci USA. 2013;110(31):12679–12684.
  • Jha S, Calvert JW, Duranski MR, et al. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol. 2008;295(2):H801–H806.
  • Panagaki T, Randi EB, Augsburger F, et al. Overproduction of H2S, generated by CBS, inhibits mitochondrial Complex IV and suppresses oxidative phosphorylation in Down syndrome. Proc Natl Acad Sci USA. 2019;116(38):18769–18771.
  • Sun Y, Teng ZY, Sun XJ, et al. Exogenous H2S reduces the acetylation levels of mitochondrial respiratory enzymes via regulating the NAD+-SIRT3 pathway in cardiac tissues of db/db mice. Am J Physiol Endocrinol Metab. 2019;317(2):E284–E297.
  • Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol. 2015;33:125–131.
  • Li L, Zhu L, Hao B, et al. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer. Oncotarget. 2017;8(20):33047–33063.
  • Bradley SJ, Kingwell BA, McConell GK. Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes. 1999;48(9):1815–1821.
  • Kingwell BA, Formosa M, Muhlmann M, et al. Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects. Diabetes. 2002;51(8):2572–2580.
  • Ross RM, Wadley GD, Clark MG, et al. Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats. Diabetes. 2007;56(12):2885–2892.
  • Abot A, Lucas A, Bautzova T, et al. Galanin enhances systemic glucose metabolism through enteric nitric oxide synthase-expressed neurons. Mol Metab. 2018;10:100–108.
  • Fryer LG, Hajduch E, Rencurel F, et al. Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes. 2000;49(12):1978–1985.
  • Carling D. The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem Sci. 2004;29(1):18–24.
  • Chen ZP, Mitchelhill KI, Michell BJ, et al. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 1999;443(3):285–289.
  • Ahlstrom K, Biber B, Aberg A, et al. Metabolic responses in ischemic myocardium after inhalation of carbon monoxide. Acta Anaesthesiol Scand. 2009;53(8):1036–1042.
  • Stojak M, Kaczara P, Motterlini R, et al. Modulation of cellular bioenergetics by CO-releasing molecules and NO-donors inhibits the interaction of cancer cells with human lung microvascular endothelial cells. Pharmacol Res. 2018;136:160–171.
  • Kaczara P, Motterlini R, Kus K, et al. Carbon monoxide shifts energetic metabolism from glycolysis to oxidative phosphorylation in endothelial cells. FEBS Lett. 2016;590(20):3469–3480.
  • Braud L, Pini M, Muchova L, et al. Carbon monoxide-induced metabolic switch in adipocytes improves insulin resistance in obese mice. JCI Insight. 2018;3(22):e123485.
  • Feng X, Chen Y, Zhao J, et al. Hydrogen sulfide from adipose tissue is a novel insulin resistance regulator. Biochem Biophys Res Commun. 2009;380(1):153–159.
  • Whiteman M, Gooding KM, Whatmore JL, et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulfide. Diabetologia. 2010;53(8):1722–1726.
  • Manna P, Jain SK. Vitamin D up-regulates glucose transporter 4 (GLUT4) translocation and glucose utilization mediated by cystathionine-γ-lyase (CSE) activation and H2S formation in 3T3L1 adipocytes. J Biol Chem. 2012;287(50):42324–42332.
  • Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–465S.
  • Wiliński B, Wiliński J, Somogyi E, et al. Metformin raises hydrogen sulfide tissue concentrations in various mouse organs. Pharmacol Rep. 2013;65(3):737–742.
  • Chang T, Untereiner A, Liu J, et al. Interaction of methylglyoxal and hydrogen sulfide in rat vascular smooth muscle cells. Antioxid Redox Signal. 2010;12(9):1093–1100.
  • Zhang L, Yang G, Untereiner A, et al. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. Endocrinology. 2013;154(1):114–126.
  • Yang G. H2S and glucose metabolism, how does the stink regulate the sweet? Immunoendocrinol. 2016;3:e1066.
  • Tiwari S, Ndisang JF. The heme oxygenase system and type-1 diabetes. Curr Pharm Des. 2014;20(9):1328–1337.
  • Konturek JW, Hengst K, Kulesza E, et al. Role of endogenous nitric oxide in the control of exocrine and endocrine pancreatic secretion in humans. Gut. 1997;40(1):86–91.
  • Obregon C, Graf L, Chung KF, et al. Nitric oxide sustains IL-1β expression in human dendritic cells enhancing their capacity to induce IL-17-producing T-cells. PLoS One. 2015;10(4):e0120134.
  • Laffranchi R, Gogvadze V, Richter C, et al. Nitric oxide (nitrogen monoxide, NO) stimulates insulin secretion by inducing calcium release from mitochondria. Biochem Biophys Res Commun. 1995;217(2):584–591.
  • Jones PM, Persaud SJ, Bjaaland T, et al. Nitric oxide is not involved in the initiation of insulin secretion from rat islets of Langerhans. Diabetologia. 1992;35(11):1020–1027.
  • Steer SA, Scarim AL, Chambers KT, et al. Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med. 2006;3(2):e17.
  • Broniowska KA, Oleson BJ, Corbett JA. β-Cell responses to nitric oxide. Vitam Horm. 2014;95:299–322.
  • Hughes KJ, Chambers KT, Meares GP, et al. Nitric oxides mediates a shift from early necrosis to late apoptosis in cytokine-treated β-cells that is associated with irreversible DNA damage. Am J Physiol Endocrinol Metab. 2009;297(5):E1187–E1196.
  • Haloul M, Vinjamuri SJ, Naquiallah D, et al. Hyperhomocysteinemia and low folate and vitamin B12 are associated with vascular dysfunction and impaired nitric oxide sensitivity in morbidly obese patients. Nutrients. 2020;1:2014.
  • Mu K, Sun Y, Zhao Y, et al. Hepatic nitric oxide synthase 1 adaptor protein regulates glucose homeostasis and hepatic insulin sensitivity in obese mice depending on its PDZ binding domain. EBioMedicine. 2019;47:352–364.
  • Rahman FU, Park DR, Joe Y, et al. Critical roles of carbon monoxide and nitric oxide in Ca2+ signaling for insulin secretion in pancreatic islets. Antioxid Redox Signal. 2019;30(4):560–576.
  • Burgess A, Li M, Vanella L, et al. Adipocyte heme oxygenase-1 induction attenuates metabolic syndrome in both male and female obese mice. Hypertension. 2010;56(6):1124–1130.
  • Cao J, Peterson SJ, Sodhi K, et al. Heme oxygenase gene targeting to adipocytes attenuates adiposity and vascular dysfunction in mice fed a high-fat diet. Hypertension. 2012;60(2):467–475.
  • Csongradi E, Docarmo JM, Dubinion JH, et al. Chronic HO-1 induction with cobalt protoporphyrin (CoPP) treatment enhances oxygen consumption, activity, heat production and lowers body weight in obese melanocortin-4 receptor-deficient mice. Int J Obes. 2012;36(2):244–253.
  • Hosick PA, AlAmodi AA, Storm MV, et al. Chronic carbon monoxide treatment attenuates development of obesity and remodels adipocytes in mice fed a high-fat diet. Int J Obes. 2014;38(1):132–139.
  • Kaneko Y, Kimura Y, Kimura H, et al. L-cysteine inhibits insulin release from the pancreatic beta-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes. 2006;55(5):1391–1397.
  • Yang G, Yang W, Wu L, et al. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. J Biol Chem. 2007;282(22):16567–16576.
  • Ali MY, Whiteman M, Low CM, et al. Hydrogen sulphide reduces insulin secretion from HIT-T15 cells by a KATP channel-dependent pathway. J Endocrinol. 2007;195(1):105–112.
  • Tang G, Zhang L, Yang G, et al. Hydrogen sulfide-induced inhibition of L-type Ca2+ channels and insulin secretion in mouse pancreatic beta cells. Diabetologia. 2013;56(3):533–541.
  • Griffin BA. Lipid metabolism. Surgery Oxford. 2013;31(6):267–272.
  • Duplain H, Burcelin R, Sartori C, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104(3):342–345.
  • Suolang PC, Liu BQ, Chen J, et al. Protective effect and mechanism of Qiwei Tiexie capsule on 3T3-L1 adipocytes cells and rats with nonalcoholic fatty liver disease by regulating LXRα, PPARγ, and NF-κB-iNOS-NO signaling pathways. J Ethnopharmacol. 2019;236:316–325.
  • Sansbury BE, Cummins TD, Tang Y, et al. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res. 2012;111(9):1176–1189.
  • García-Villafranca J, Guillén A, Castro J. Involvement of nitric oxide/cyclic GMP signaling pathway in the regulation of fatty acid metabolism in rat hepatocytes. Biochem Pharmacol. 2003;65(5):807–812.
  • Cao Y, Gomes SA, Rangel EB, et al. S-nitrosoglutathione reductase-dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis. J Clin Invest. 2015;125(4):1679–1691.
  • Doulias PT, Tenopoulou M, Greene JL, et al. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci Signal. 2013;6(256):rs1.
  • Noda K, Godo S, Saito H, et al. Opposing roles of nitric oxide and rho-kinase in lipid metabolism in mice. Tohoku J Exp Med. 2015;235(3):171–183.
  • White V, González E, Capobianco E, et al. Leptin modulates nitric oxide production and lipid metabolism in human placenta. Reprod Fertil Dev. 2006;18(4):425–432.
  • Ricchi M, Odoardi MR, Carulli L, et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol. 2009;24(5):830–840.
  • Ruscica M, Ferri N, Macchi C, et al. Lipid lowering drugs and inflammatory changes: an impact on cardiovascular outcomes? Ann Med. 2018;50(6):461–484.
  • Zhao XJ, Yu HW, Yang YZ, Wu WY, et al. Corrigendum to “Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway” [Redox Biol. 18 (2018) 124-137]. Redox Biol. 2019;22:101101.
  • Gliozzi M, Scicchitano M, Bosco F, et al. Modulation of nitric oxide synthases by oxidized LDLs: role in vascular inflammation and atherosclerosis development. Int J Mol Sci. 2019;20(13):3294.
  • Rubbo H, Radi R, Trujillo M, et al. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem. 1994;269(42):26066–26075.
  • Sarma JSM, Tillmanns H, Ikeda S, et al. The effect of carbon monoxide on lipid metabolism of human coronary arteries. Atherosclerosis. 1975;22(2):193–198.
  • Topping DL. Metabolic effects of carbon monoxide in relation to atherogenesis. Atherosclerosis. 1977;26(2):129–137.
  • Fiorucci S, Distrutti E, Cirino G, et al. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology. 2006;131(1):259–271.
  • Yang Y, Wang Y, Sun J, et al. Dietary methionine restriction reduces hepatic steatosis and oxidative stress in high-fat-fed mice by promoting H2S production. Food Funct. 2019;10(1):61–77.
  • Loiselle JJ, Yang G, Wu L. Hydrogen sulfide and hepatic lipid metabolism - a critical pairing for liver health. Br J Pharmacol. 2020;177(4):757–768.
  • Mani S, Li H, Untereiner A, et al. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation. 2013;127(25):2523–2534.
  • Wu DD, Wang DY, Li HM, et al. Hydrogen sulfide as a novel regulatory factor in liver health and disease. Oxid Med Cell Longev. 2019;2019:3831713.
  • Wu D, Zheng N, Qi K, et al. Exogenous hydrogen sulfide mitigates the fatty liver in obese mice through improving lipid metabolism and antioxidant potential. Med Gas Res. 2015;5(1):1.
  • Sun Y, Tian Z, Liu N, et al. Exogenous H2S switches cardiac energy substrate metabolism by regulating SIRT3 expression in db/db mice. J Mol Med. 2018;96(3–4):281–299.
  • Ali A, Zhang Y, Fu M, et al. Cystathionine gamma-lyase/H2S system suppresses hepatic acetyl-CoA accumulation and nonalcoholic fatty liver disease in mice. Life Sci. 2020;252:117661.
  • Hankir MK, Klingenspor M. Brown adipocyte glucose metabolism: a heated subject. EMBO Rep. 2018;19(9):e46404.
  • Krustrup P, Ferguson RA, Kjaer M, et al. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis. J Physiol. 2003;549(1):255–269.
  • Blatteis CM, Sehic E, Li S. Afferent pathways of pyrogen signaling. Ann NY Acad Sci. 1998;856:95–107.
  • Kluger MJ. Fever: role of pyrogens and cryogens. Physiol Rev. 1991;71(1):93–127.
  • Amir S, De Blasio E, English AM. NG-monomethyl-arginine co-injection attenuates the thermogenic and hyperthermic effects of E2 prostaglandin microinjection into the anterior hypothalamic preoptic area in rats. Brain Res. 1991;556(1):157–160.
  • Gourine AV. Pharmacological evidence that nitric oxide can act as an endogenous antipyretic factor in endotoxin-induced fever in rabbits. Gen Pharmacol. 1995;26(4):835–841.
  • Gourine AV, Kulchitshy VA, Gourine VN. Nitric oxide affects the activity of neurons in the preoptic/anterior hypothalamus of anesthetized rats: interaction with the effects of centrally administered interleukin-1. J Physiol. 1995;483:72.
  • Dantonio V, Batalhão ME, Marcia HMR, et al. Nitric oxide and fever: immune-to-brain signaling vs. thermogenesis in chicks. Am J Physiol Regul Integr Comp Physiol. 2016;310(10):R896–R905.
  • Steiner AA, Branco LG. Central CO-heme oxygenase pathway raises body temperature by a prostaglandin-independent way. J App Physiol. 2000;88(5):1607–1613.
  • Sabino JPJ, Soriano RN, Santos BM, et al. Central administration of aminooxyacetate, an inhibitor of H2S production, affects thermoregulatory but not cardiovascular and ventilatory responses to hypercapnia in spontaneously hypertensive rats. Respir Physiol Neurobiol. 2019;263:38–46.
  • Dugbartey GJ, Hardenberg MC, Kok WF, et al. Renal mitochondrial response to low temperature in non-hibernating and hibernating species. Antioxid Redox Signal. 2017;27(9):599–617.
  • Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov. 2010;9(6):465–482.
  • Calle EE, Thun MJ, Petrelli JM, et al. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341(15):1097–1105.
  • Kraus RM, Houmard JA, Kraus WE, et al. Obesity, insulin resistance, and skeletal muscle nitric oxide synthase. J Appl Physiol. 2012;113(5):758–765.
  • Valerio A, Cardile A, Cozzi V, et al. TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest. 2006;116(10):2791–2798.
  • Anderson HD, Rahmutula D, Gardner DG. Tumor necrosis factor-alpha inhibits endothelial nitric-oxide synthase gene promoter activity in bovine aortic endothelial cells. J Biol Chem. 2004;279(2):963–969.
  • Bulotta S, Barsacchi R, Rotiroti D, et al. Activation of the endothelial nitric-oxide synthase by tumor necrosis factor-alpha. A novel feedback mechanism regulating cell death. J Biol Chem. 2001;276(9):6529–6536.
  • Merial C, Bouloumie A, Trocheris V, et al. Nitric oxide-dependent downregulation of adipocyte UCP-2 expression by tumor necrosis factor-alpha. Am J Physiol Cell Physiol. 2000;279(4):C1100–C1106.
  • Benkhoff S, Loot AE, Pierson I, et al. Leptin potentiates endothelium-dependent relaxation by inducing endothelial expression of neuronal NO synthase. Arterioscler Thromb Vasc Biol. 2012;32(7):1605–1612.
  • Sabry MM, Mahmoud MM, Shoukry HS, et al. Interactive effects of apelin, renin-angiotensin system and nitric oxide in treatment of obesity-induced type 2 diabetes mellitus in male albino rats. Arch Physiol Biochem. 2019;125(3):244–254.
  • Altara R, Giordano M, Nordén ES, et al. Targeting obesity and diabetes to treat heart failure with preserved ejection fraction. Front Endocrinol. 2017;8:160.
  • Yang G, Ju Y, Fu M, et al. Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(2):165–176.
  • Haj-Yasein NN, Berg O, Jernerén F, et al. Cysteine deprivation prevents induction of peroxisome proliferator-activated receptor gamma-2 and adipose differentiation of 3T3-L1 cells. Biochim Biophys Acta. 2017;1862(6):623–635.
  • Mani S, Yang G, Wang R. A critical life-supporting role for cystathionine γ-lyase in the absence of dietary cysteine supply. Free Radic Biol Med. 2011;50(10):1280–1287.
  • Kar S, Shahshahan HR, Hackfort BT, et al. Exercise training promotes cardiac hydrogen sulfide biosynthesis and mitigates pyroptosis to prevent high-fat diet-induced diabetic cardiomyopathy. Antioxidants. 2019;8(12):638.
  • Mohammed Al-Amily I, Lundquist I, Salehi A. Expression levels of enzymes generating NO and CO in islets of murine and human diabetes. Biochem Biophys Res Commun. 2019;520(2):473–478.
  • Vanizor B, Orem A, Karahan SC, et al. Decreased nitric oxide end-products and its relationship with high-density lipoprotein and oxidative stress in people with type 2 diabetes without complications. Diabetes Res Clin Pract. 2001;54(1):33–39.
  • Watkins CC, Sawa A, Jaffrey S, et al. Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy. J Clin Invest. 2000;106(3):373–384.
  • Prabhakar S, Starnes J, Shi S, et al. Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production. J Am Soc Nephrol. 2007;18(11):2945–2452.
  • Chu S, Bohlen HG. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism. Am J Physiol Renal Physiol. 2004;287(3):F384–F392.
  • Pitocco D, Zaccardi F, Di Stasio E, et al. Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud. 2010;7(1):15–25.
  • Tessari P. Nitric oxide in the normal kidney and in patients with diabetic nephropathy. J Nephrol. 2015;28(3):257–268.
  • Cukiernik M, Mukherjee S, Downey D, et al. Heme oxygenase in the retina in diabetes. Curr Eye Res. 2003;27(5):301–308.
  • Ptilovanciv EO, Fernandes GS, Teixeira LC, et al. Heme oxygenase 1 improves glucoses metabolism and kidney histological alterations in diabetic rats. Diabetol Metab Syndr. 2013;5(1):3.
  • Abraham NG, Kushida T, McClung J, et al. Heme oxygenase-1 attenuates glucose-mediated cell growth arrest and apoptosis in human microvessel endothelial cells. Circ Res. 2003;93(6):507–514.
  • Geraldes P, Yagi K, Ohshiro Y, et al. Selective regulation of heme oxygenase-1 expression and function by insulin through IRS1/Phosphoinositide 3-Kinase/Akt-2 pathway. J Biol Chem. 2008;283(49):34327–34336.
  • Kosuru R, Kandula V, Rai U, et al. Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/NRF2/HO-1 pathway in fructose-fed diabetic rats. Cardiovasc Drugs Ther. 2018;32(2):147–163.
  • Waldman M, Nudelman V, Shainberg A, et al. The role of heme oxygenase 1 in the protective effect of caloric restriction against diabetic cardiomyopathy. Int J Mol Sci. 2019;20(10):2427.
  • Brancaleone V, Roviezzo F, Vellecco V, et al. Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice. Br J Pharmacol. 2008;155(5):673–680.
  • Jain SK, Bull R, Rains JL, et al. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal. 2010;12(11):1333–1337.
  • Xie L, Gu Y, Wen M, et al. Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes. 2016;65(10):3171–3184.
  • Suzuki K, Olah G, Modis K, et al. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc Natl Acad Sci USA. 2011;108(33):13829–13834.
  • Papu John AS, Kundu S, Pushpakumar S, et al. Hydrogen sulfide inhibits Ca2+-induced mitochondrial permeability transition pore opening in type-1 diabetes. Am J Physiol Endocrinol Metab. 2019;317(2):E269–E283.
  • Hayden LJ, Goeden H, Roth SH. Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats. J Toxicol Environ Health. 1990;31(1):45–52.
  • Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care. 2013;40(1):195–211.
  • Yatera Y, Shibata K, Furuno Y, et al. Severe dyslipidaemia, atherosclerosis, and sudden cardiac death in mice lacking all NO synthases fed a high-fat diet. Cardiovasc Res. 2010;87(4):675–682.
  • Khedara A, Kawai Y, Kayashita J, et al. Feeding rats the nitric oxide synthase inhibitor, L-N(omega)nitroarginine, elevates serum triglyceride and cholesterol and lowers hepatic fatty acid oxidation. J Nutr. 1996;126(10):2563–2567.
  • Ercan M, Firtina S, Konukoglu D. Comparison of plasma viscosity as a marker of endothelial dysfunction with nitric oxide and asymmetric dimethylarginine in subjects with dyslipidemia. Clin Hemorheol Microcirc. 2014;57(4):315–323.
  • Salley TN, Mishra M, Tiwari S, et al. The heme oxygenase system rescues hepatic deterioration in the condition of obesity co-morbid with type-2 diabetes. PLoS One. 2013;8(11):e79270.
  • Hinds TD, Jr, Sodhi K, Meadows C, et al. Increased HO-1 levels ameliorate fatty liver development through a reduction of heme and recruitment of FGF21. Obesity. 2014;22(3):705–712.
  • Liu XM, Peyton KJ, Shebib AR, et al. Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am J Physiol Heart Circ Physiol. 2011;300(1):H84–H93.
  • Rodella LF, Vanella L, Peterson SJ, et al. Heme oxygenase-derived carbon monoxide restores vascular function in type 1 diabetes. Drug Metabol Lett. 2008;2(4):290–300.
  • Wu Y, Dong Y, Song P, et al. Activation of the AMP-activated protein kinase (AMPK) by nitrated lipids in endothelial cells. PLoS One. 2012;7(2):e31056.
  • Crawford TN, Alfaro DV, 3rd, Kerrison JB, et al. Diabetic retinopathy and angiogenesis. Curr Diabetes Rev. 2009;5(1):8–13.
  • Liu D, He Z, Wu L, et al. Effects of induction/inhibition of endogenous heme oxygenase-1 on lipid metabolism, endothelial function, and atherosclerosis in rabbits on a high fat diet. J Pharmacol Sci. 2012;118(1):14–24.
  • Liu Y, Mi J, Ding YG, et al. Survey of plasma lipid value in children in Beijing area and the changes of gaseous molecule-hydrogen sulfide in the ones with dyslipidemia. Beijing Da Xue Xue Bao Yi Xue Ban. 2006;38:146–150.
  • Sun L, Zhang S, Yu C, et al. Hydrogen sulfide reduces serum triglyceride by activating liver autophagy via the AMPK-mTOR pathway. Am J Physiol Endocrinol Metab. 2015;309(11):E925–E935.
  • Ji W, Liu S, Dai J, et al. Hydrogen sulfide defends against the cardiovascular risk of Nw-nitro-L-argininemethyl ester-induced hypertension in rats via the nitric oxide/endothelial nitric oxide synthase pathway. Chin Med J. 2014;127:3751–3757.
  • Liu N, Wu J, Zhang L, et al. Hydrogen sulphide modulating mitochondrial morphology to promote mitophagy in endothelial cells under high-glucose and high-palmitate. J Cell Mol Med. 2017;21(12):3190–3203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.