244
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Silver nanoparticles-induced H2O2 triggers apoptosis-like death and is associated with dinF in Escherichia coli

&
Pages 107-118 | Received 20 Apr 2020, Accepted 12 Dec 2020, Published online: 06 Jan 2021

References

  • Hong Y, Zeng J, Wang X, et al. Post-stress bacterial cell death mediated by reactive oxygen species. Proc Natl Acad Sci USA. 2019;116(20):10064–10071.
  • Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128–145.
  • Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, et al. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol. 2011;9(1):30.
  • Chwalibog A, Sawosz E, Hotowy A, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed. 2010;5:1085–1094.
  • Dar MA, Ingle A, Rai M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine. 2013;9(1):105–110.
  • Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthcare Mater. 2018;7(13):1701503.
  • Yan X, He B, Liu L, et al. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics. 2018;10(4):557–564.
  • Kędziora A, Speruda M, Krzyżewska E, et al. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci. 2018;19(2):444.
  • Gurunathan S, Choi Y-J, Kim J-H. Antibacterial efficacy of silver nanoparticles on endometritis caused by Prevotella melaninogenica and Arcanobacterum pyogenes in dairy cattle. Int J Mol Sci. 2018;19(4):1210.
  • Durán N, Durán M, de Jesus MB, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12(3):789–799.
  • Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10(3):339–354.
  • Yuan J, Kroemer G. Alternative cell death mechanisms in development and beyond. Genes Dev. 2010;24(23):2592–2602.
  • Choi H, Hwang JS, Lee DG. Coprisin exerts antibacterial effects by inducing apoptosis-like death in Escherichia coli. IUBMB Life. 2016;68(1):72–78.
  • Erental A, Kalderon Z, Saada A, et al. Apoptosis-like death, an extreme SOS response in Escherichia coli. MBio. 2014;5(4):e01426.
  • Rodríguez-Beltrán J, Rodríguez-Rojas A, Guelfo JR, et al. The Escherichia coli SOS gene dinF protects against oxidative stress and bile salts. PLoS One. 2012;7(4):e34791.
  • Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2(1)
  • Lee W, Lee DG. Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli. J Microbiol Biotechnol. 2014;24(9):1232–1237.
  • Kim S, Woo ER, Lee DG. Synergistic antifungal activity of isoquercitrin: apoptosis and membrane permeabilization related to reactive oxygen species in Candida albicans. IUBMB Life. 2019;71(2):283–292.
  • Li Y, Hugenholtz J, Abee T, et al. Glutathione protects Lactococcus lactis against oxidative stress. Appl Env Microbiol. 2003;69(10):5739–5745.
  • Kumar A, Pandey AK, Singh SS, Shanker R, et al. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biol Med. 2011;51(10):1872–1881.
  • Kim S, Lee DG. Oxyresveratrol-induced DNA cleavage triggers apoptotic response in Candida albicans. Microbiology. 2018;164(9):1112–1121.
  • Lee B, Hwang JS, Lee DG. Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes. Appl Microbiol Biotechnol. 2019;103(3):1417–1427.
  • Lee H, Lee DG. SOS genes contribute to Bac8c induced apoptosis-like death in Escherichia coli. Biochimie. 2019;157:195–203.
  • Marcén M, Ruiz V, Serrano MJ, et al. Oxidative stress in E. coli cells upon exposure to heat treatments. Int J Food Microbiol. 2017;241:198–205.
  • Ng CF, Schafer FQ, Buettner GR, et al. The rate of cellular hydrogen peroxide removal shows dependency on GSH: mathematical insight into in vivo H2O2 and GPx concentrations. Free Radical Res . 2007;41(11):1201–1211.
  • Müller A, Eller J, Albrecht F, et al. Allicin induces thiol stress in bacteria through S-allylmercapto modification of protein cysteines. J Biol Chem. 2016;291(22):11477–11490.
  • Cabiscol Català E, Tamarit Sumalla J, Ros Salvador J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol. 2000;3(1):3–8.
  • Hirakawa K. Biomolecules oxidation by hydrogen peroxide and singlet oxygen. In: Cristiana F, Elena A, editors. Reactive oxygen species (ROS) in living cells. London (UK): IntechOpen; 2017.
  • Wadhawan S, Gautam S. Rescue of Escherichia coli cells from UV-induced death and filamentation by caspase-3 inhibitor. Int Microbiol. 2019;22(3):369–376.
  • Ultee E, Ramijan K, Dame R, et al. Stress-induced adaptive morphogenesis in bacteria. Adv Microb Physiol. 2019;74:97–141.
  • Lee W, Kim K-J, Lee DG. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals. 2014;27(6):1191–1201.
  • Dwyer DJ, Camacho DM, Kohanski MA, et al. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell. 2012;46(5):561–572.
  • Kenyon CJ, Walker GC. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc Natl Acad Sci USA. 1980;77(5):2819–2823.
  • Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11(7):443–454.
  • Kim SY, Park C, Jang H-J, et al. Antibacterial strategies inspired by the oxidative stress and response networks. J Microbiol. 2019;57(3):203–212.
  • Hritcu L, Stefan M, Ursu L, et al. Exposure to silver nanoparticles induces oxidative stress and memory deficits in laboratory rats. Central Euro J Biol. 2011;6(4):497–509.
  • Wang SY, Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem. 2000;48(11):5677–5684.
  • Masip L, Veeravalli K, Georgiou G. The many faces of glutathione in bacteria. Antioxid Redox Signal. 2006;8(5-6):753–762.
  • Pereira C, Silva R, Saraiva L, et al. Mitochondria-dependent apoptosis in yeast. Biochim Biophys Acta. 2008;1783(7):1286–1302.
  • Neeley WL, Essigmann JM. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol. 2006;19(4):491–505.
  • Belenky P, Jonathan DY, Porter CB, et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 2015;13(5):968–980.
  • Hwang D, Lim Y-H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci Rep. 2015;5:10029.
  • Powers S, DeJongh M, Best AA, et al. Cautions about the reliability of pairwise gene correlations based on expression data. Front Microbiol. 2015;6:650.
  • Dwyer DJ, Winkler JA. Identification and characterization of programmed cell death markers in bacterial models. Meth Mol Biol. 2013;1004:145–159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.