301
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Glutathione peroxidase 2 (Gpx2) preserves mitochondrial function and decreases ROS levels in chronologically aged yeast

, , , , &
Pages 165-175 | Received 24 Oct 2020, Accepted 23 Jan 2021, Published online: 08 Feb 2021

References

  • Tanaka T, Izawa S, Inoue Y. GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J Biol Chem. 2005;280(51):42078–42087.
  • Inoue Y, Matsuda T, Sugiyama K, et al. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem. 1999;274(38):27002–27009.
  • Ukai Y, Kishimoto T, Ohdate T, et al. Glutathione peroxidase 2 in Saccharomyces cerevisiae is distributed in mitochondria and involved in sporulation. Biochem Biophys Res Commun. 2011;411(3):580–585.
  • Cozza G, Rossetto M, Bosello-Travain V, et al. Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: the polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center. Free Radic Biol Med. 2017;112:1–11.
  • Panov AV, Dikalov SI. Cardiolipin, Perhydroxyl radicals, and lipid peroxidation in mitochondrial dysfunctions and aging. Oxid Med Cell Longev. 2020;2020:1323028.
  • Tuller G, Nemec T, Hrastnik C, et al. Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast. 1999;15(14):1555–1564.
  • Schneider C. An update on products and mechanisms of lipid peroxidation. Mol Nutr Food Res. 2009;53(3):315–321.
  • Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, et al. Elucidation of the effects of lipoperoxidation on the mitochondrial electron transport chain using yeast mitochondria with manipulated fatty acid content. J Bioenerg Biomembr. 2009;41(1):15–28.
  • Aguilar-Toral R, Fernández-Quintero M, Ortiz-Avila O, et al. Characterization of the effects of a polyunsaturated fatty acid (PUFA) on mitochondrial bioenergetics of chronologically aged yeast. J Bioenerg Biomembr. 2014;46(3):205–220.
  • Guérin B, Labbe P, Somlo M. Preparation of yeast mitochondria (Saccharomyces cerevisiae) with good P/O and respiratory control ratios. Methods Enzymol. 1979;55:149–159.
  • Stuart RA. Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria. J Bioenerg Biomembr. 2008;40(5):411–417.
  • Jakubowski W, Biliński T, Bartosz G. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med. 2000;28(5):659–664.
  • Lee J, Godon C, Lagniel G, et al. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem. 1999;274(23):16040–16046.
  • Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45(7–8):466–472.
  • Avery AM, Avery SV. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem. 2001;276(36):33730–33735.
  • Tyurina YY, Lou W, Qu F, et al. Lipidomics characterization of biosynthetic and remodeling pathways of cardiolipins in genetically and nutritionally manipulated yeast cells. ACS Chem Biol. 2017;12(1):265–281.
  • Lou W, Ting HC, Reynolds CA, et al. Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(10):1354–1368.
  • Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88.
  • Cortés-Rojo C, Estrada-Villagómez M, Calderón-Cortés E, et al. Electron transport chain dysfunction by H(2)O (2) is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria. J Bioenerg Biomembr. 2011;43(2):135–147.
  • Delaunay A, Pflieger D, Barrault MB, et al. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell. 2002;111(4):471–481.
  • Ohdate T, Kita K, Inoue Y. Kinetics and redox regulation of Gpx1, an atypical 2-Cys peroxiredoxin, in Saccharomyces cerevisiae. FEMS Yeast Res. 2010;10(6):787–790.
  • Temple MD, Perrone GG, Dawes IW. Complex cellular responses to reactive oxygen species. Trends Cell Biol. 2005;15(6):319–326.
  • Dawes IW. 2004. Stress responses. In: Schweizer I, editor. The metabolism and molecular physiology of Sacharomyces cerevisiae. 2nd ed. Philadelphia (PA): Taylor & Francis Inc.; p. 376–438.
  • Ohdate T, Inoue Y. Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium. Biochim Biophys Acta. 2012;1821(9):1295–1305.
  • Paulsen CE, Carroll KS. Chemical dissection of an essential redox switch in yeast. Chem Biol. 2009;16(2):217–225.
  • Azevedo D, Tacnet F, Delaunay A, et al. Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Free Radic Biol Med. 2003;35(8):889–900.
  • Kainou K, Kamisaka Y, Kimura K, et al. Isolation of Delta12 and omega3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and alpha-linolenic acids in Saccharomyces cerevisiae. Yeast. 2006;23(8):605–612.
  • Khor GK, Uzir MH. Saccharomyces cerevisiae: a potential stereospecific reduction tool for biotransformation of mono- and sesquiterpenoids. Yeast. 2011;28(2):93–107.
  • Casu F, Pinu FR, Stefanello E, et al. The fate of linoleic acid on Saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions. Metabolomics. 2018;14(8):103.
  • Hiltunen JK, Mursula AM, Rottensteiner H, et al. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2003;27(1):35–64.
  • Miyagi H, Kawai S, Murata K. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J Biol Chem. 2009;284(12):7553–7560.
  • Pozniakovsky AI, Knorre DA, Markova OV, et al. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol. 2005;168(2):257–269.
  • Lange C, Nett JH, Trumpower BL, et al. Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. Embo J. 2001;20(23):6591–6600.
  • Cortés-Rojo C, Rodríguez-Orozco AR. Importance of oxidative damage on the electron transport chain for the rational use of mitochondria-targeted antioxidants. Mini Rev Med Chem. 2011;11(7):625–632.
  • Sugiyama K, Highet RJ, Woods A, et al. Hydrogen peroxide-mediated alteration of the heme prosthetic group of metmyoglobin to an iron chlorin product: evidence for a novel oxidative pathway. Proc Natl Acad Sci USA. 1997;94(3):796–801.
  • Imlay JA. Iron-sulphur clusters and the problem with oxygen. Mol Microbiol. 2006;59(4):1073–1082.
  • Frohnert BI, Bernlohr DA. Protein carbonylation, mitochondrial dysfunction, and insulin resistance. Adv Nutr. 2013;4(2):157–163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.