312
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Melatonin improves the antioxidant capacity in cardiac tissue of Wistar rats after exhaustive exercise

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 677-692 | Received 24 Nov 2020, Accepted 28 May 2021, Published online: 24 Jun 2021

References

  • Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med. 2011;51(5):942–950.
  • Weiner RB, Baggish AL. Exercise-induced cardiac remodeling. Prog Cardiovasc Dis. 2012;54(5):380–386.
  • Riebe D, Ehrman JK, Liguori G, et al. ACSM’s guidelines for exercise testing and prescription. Philadelphia (PA): Lippincott Williams & Wilkins; 2018.
  • Rivera-Brown AM, Frontera WR. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. PM & R. 2012;4(11):797–804.
  • Corrado D, Basso C, Pavei A, et al. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA. 2006;296(13):1593–1601.
  • Harmon KG, Zigman M, Drezner JA. The effectiveness of screening history, physical exam, and ECG to detect potentially lethal cardiac disorders in athletes: a systematic review/meta-analysis. J Electrocardiol. 2015;48(3):329–338.
  • Holst AG, Winkel BG, Theilade J, et al. Incidence and etiology of sports-related sudden cardiac death in Denmark–implications for preparticipation screening. Heart Rhythm. 2010;7(10):1365–1371.
  • Leonardo-Mendonca RC, Martinez-Nicolas A, de Teresa Galvan C, et al. The benefits of four weeks of melatonin treatment on circadian patterns in resistance-trained athletes. Chronobiol Int. 2015;32(8):1125–1134.
  • Hardeland R. Melatonin in healthy aging and longevity. In: SRe RS, editor. Hormones in ageing and longevity healthy ageing and longevity. Vol. 6. Cham, Switzerland: Springer; 2017. p. 209–242.
  • Kawamura T, Muraoka I. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants. 2018;7(9):119.
  • Ma Z, Xin Z, Di W, et al. Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell Mol Life Sci. 2017;74(21):3989–3998.
  • Lan H, Su Y, Liu Y, et al. Melatonin protects circulatory death heart from ischemia/reperfusion injury via the JAK2/STAT3 signalling pathway. Life Sci. 2019;228:35–46.
  • Nduhirabandi F, Lamont K, Albertyn Z, et al. Role of toll-like receptor 4 in melatonin-induced cardioprotection. J Pineal Res. 2016;60(1):39–47.
  • Dube K, Dhanabalan K, Salie R, et al. Melatonin has profound effects on mitochondrial dynamics in myocardial ischaemia/reperfusion. Heliyon. 2019;5(10):e02659.
  • Tan DX, Manchester LC, Terron MP, et al. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species. J Pineal Res. 2007;42(1):28–42.
  • Ahmadi Z, Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol. 2020;34(1):11–19.
  • Galano A, Tan DX, Reiter RJ. Melatonin: a versatile protector against oxidative DNA damage. Molecules. 2018;23(3):530.
  • Reiter RJ, Tan DX, Poeggeler B, et al. Melatonin as a free radical scavenger: implications for aging and age-related diseases. Ann NY Acad Sci. 1994;719(1):1–12.
  • Barbosa Dos Santos G, Machado Rodrigues MJ, Gonçalves EM, et al. Melatonin reduces oxidative stress and cardiovascular changes induced by stanozolol in rats exposed to swimming exercise. Eurasian J Med. 2013;45(3):155–162.
  • Cimen B, Uz A, Cetin I, et al. Melatonin supplementation ameliorates energy charge and oxidative stress induced by acute exercise in rat heart tissue. Acta Cardiol Sin. 2017;33(5):530–538.
  • Veneroso C, Tunon MJ, Gonzalez-Gallego J, et al. Melatonin reduces cardiac inflammatory injury induced by acute exercise. J Pineal Res. 2009;47(2):184–191.
  • Bortolon JR, Silva Junior AJ, Murata GM, et al. Persistence of inflammatory response to intense exercise in diabetic rats. Exp Diabetes Res. 2012;2012:213986.
  • Leandro CG, Levada AC, Hirabara SM, et al. A program of moderate physical training for Wistar rats based on maximal oxygen consumption. J Strength Cond Res. 2007;21(3):751–756.
  • Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277–285.
  • Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103–1111.
  • Cingi Yirun M, Unal K, Altunsoy Sen N, et al. Evaluation of oxidative stress in bipolar disorder in terms of total oxidant status, total antioxidant status, and oxidative stress index. Arch Neuropsychiatr. 2016;53(3):194–198.
  • Henson CP, Cleland WW. Purification and kinetic studies of beef liver cytoplasmic aconitase. J Biol Chem. 1967;242(17):3833–3838.
  • Zheng W, Ren S, Graziano JH. Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity. Brain Res. 1998;799(2):334–342.
  • Flohe L, Otting F. Superoxide dismutase assays. Methods Enzymol. 1984;105:93–104.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254.
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–120.
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology. 1979;24:145–149.
  • Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27(3):502–522.
  • Levine RL, Williams JA, Stadtman ER, et al. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–357.
  • Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–363.
  • Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515–540.
  • Hoaglin DC, Iglewicz B. Fine-tuning some resistant rules for outlier labeling. J Am Stat Assoc. 1987;82(400):1147–1149.
  • Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 1980;20:441–462.
  • Sawilowsky SS. New effect size rules of thumb. J Mod App Stat Meth. 2009;8(2):597–599.
  • Souza-Junior T, Lorenco-Lima L, Ganini D, et al. Delayed uric Acid accumulation in plasma provides additional anti-oxidant protection against iron-triggered oxidative stress after a wingate test. Biol Sport. 2014;31(4):271–276.
  • He F, Li J, Liu Z, et al. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016;7:486.
  • Kemp G, Böning D, Beneke R, et al. Explaining pH change in exercising muscle: lactic acid, proton consumption, and buffering vs. strong ion difference. Am J Physiol Regul Integr Compar Physiol. 2006;291(1):R235–R237.
  • Sawyer DT. Oxygen chemistry. Oxford: Oxford University Press; 1991.
  • Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268(5):L699–722.
  • Hasegawa N, Fujie S, Horii N, et al. Effects of different exercise modes on arterial stiffness and nitric oxide synthesis. Med Sci Sports Exerc. 2018;50(6):1177–1185.
  • Linden KC, Wadley GD, Garnham AP, et al. Effect of l-arginine infusion on glucose disposal during exercise in humans. Med Sci Sports Exerc. 2011;43(9):1626–1634.
  • Medeiros-Lima DJ, Mendes-Ribeiro AC, Brunini TM, et al. Erythrocyte nitric oxide availability and oxidative stress following exercise. Clin Hemorheol Microcirc. 2017;65(3):219–228.
  • Merry TL, Lynch GS, McConell GK. Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction. Am J Physiol Regulat Integr Compar Physiol. 2010;299(6):R1656–R1665.
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. Netherlands: Elsevier; 2015.
  • Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev. 1994;52(8 Pt 1):253–265.
  • Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005;27(2):119–130.
  • Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1–9.
  • Reiter RJ, Mayo JC, Tan DX, et al. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253–278.
  • Reiter RJ, Tan DX, Osuna C, et al. Actions of melatonin in the reduction of oxidative stress. A review. J Biomed Sci. 2000;7(6):444–458.
  • Antolín I, Rodríguez C, Saínz RM, et al. Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J. 1996;10(8):882–890.
  • Bicer M, Akil M, Baltaci AK, et al. Protective effect of melatonin on lipid peroxidation in various tissues of diabetic rats subjected to an acute swimming exercise. Bratisl Lek Listy. 2012;113(12):698–701.
  • Flohé L. The fairytale of the GSSG/GSH redox potential. Biochim Biophys Acta. 2013;1830(5):3139–3142.
  • Ghosh S, Sulistyoningrum DC, Glier MB, et al. Altered glutathione homeostasis in heart augments cardiac lipotoxicity associated with diet-induced obesity in mice. J Biol Chem. 2011;286(49):42483–42493.
  • Gupte SA, Arshad M, Viola S, et al. Pentose phosphate pathway coordinates multiple redox-controlled relaxing mechanisms in bovine coronary arteries. Am J Physiol Heart Circ Physiol. 2003;285(6):H2316–26.
  • Wu JH, Batist G. Glutathione and glutathione analogues; Therapeutic potentials. Biochim Biophys Acta. 2013;1830(5):3350–3353.
  • Ookhtens M, Kaplowitz N. Role of the liver in interorgan homeostasis of glutathione and cyst(e)ine. Semin Liver Dis. 1998;18(04):313–329.
  • Wang Z, Ni L, Wang J, et al. The protective effect of melatonin on smoke-induced vascular injury in rats and humans: a randomized controlled trial. J Pineal Res. 2016;60(2):217–227.
  • Maarman GJ, Andrew BM, Blackhurst DM, et al. Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C2C12 myotubes. J Appl Physiol (1985). 2017;122(4):1003–1010.
  • Tong WH, Rouault TA. Metabolic regulation of citrate and iron by aconitases: role of iron-sulfur cluster biogenesis. Biometals. 2007;20(3–4):549–564.
  • Popov SS, Pashkov AN, Popova TN, et al. Oxidative status and citrate concentration in rat tissues during experimental hyperthyroidism and melatonin treatment. Bull Exp Biol Med. 2007;144(2):203–206.
  • Calabrese EJ, Mattson MP. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech Dis. 2017;3:13.
  • Ursini F, Maiorino M, Forman HJ. Redox homeostasis: the Golden Mean of healthy living. Redox Biol. 2016;8:205–215.
  • Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66(6):789–800.
  • Liu D, Ma Z, Di S, et al. AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic Biol Med. 2018;129:59–72.
  • Rabinovitch RC, Samborska B, Faubert B, et al. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep. 2017;21(1):1–9.
  • Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 2015;282(4):647–672.
  • Rahman MM, Kwon HS, Kim MJ, et al. Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus. Biomed Pharmacother. 2017;92:606–614.
  • Yu L, Gong B, Duan W, et al. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling. Sci Rep. 2017;7:41337.
  • Bicer M, Akil M, Avunduk MC, et al. Interactive effects of melatonin, exercise and diabetes on liver glycogen levels. Endokrynol Pol. 2011;62(3):252–256.
  • Kaya O, Kilic M, Celik I, et al. Effect of melatonin supplementation on plasma glucose and liver glycogen levels in rats subjected to acute swimming exercise. Pak J Pharm Sci. 2010;23(3):241–244.
  • Mazepa RC, Cuevas MJ, Collado PS, et al. Melatonin increases muscle and liver glycogen content in nonexercised and exercised rats. Life Sci. 2000;66(2):153–160.
  • Beck WR, Botezelli JD, Pauli JR, et al. Melatonin has an ergogenic effect but does not prevent inflammation and damage in exhaustive exercise. Sci Rep. 2015;5(1):18065.
  • Mendes C, Lopes AM, do Amaral FG, et al. Adaptations of the aging animal to exercise: role of daily supplementation with melatonin. J Pineal Res. 2013;55(3):229–239.
  • Barros MP, Ganini D, Lorenço-Lima L, et al. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test. J Int Soc Sports Nutr. 2012;9(1):25.
  • Kaptanoglu B, Turgut G, Genç O, et al. Effects of acute exercise on the levels of iron, magnesium, and uric acid in liver and spleen tissues. Biol Trace Elem Res. 2003;91(2):173–178.
  • Leonardo-Mendonça RC, Ocaña-Wilhelmi J, de Haro T, et al. The benefit of a supplement with the antioxidant melatonin on redox status and muscle damage in resistance-trained athletes. Appl Physiol Nutr Metab. 2017;42(7):700–707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.