137
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Constitutive oxidants from hepatocytes of male iPLA2β-null mice increases the externalization of phosphatidylethanolamine on plasma membrane

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 625-633 | Received 09 Jul 2021, Accepted 24 Sep 2021, Published online: 26 Oct 2021

References

  • van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–124.
  • Holthuis JCM, Menon AK. Lipid landscapes and pipelines in membrane homeostasis. Nature. 2014;510(7503):48–57.
  • Ikonen E, Simons K. Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells. Semin Cell Dev Biol. 1998;9(5):503–509.
  • Vance JE. Phospholipid synthesis and transport in mammalian cells. Traffic. 2015;16(1):1–18.
  • Daleke DL. Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res. 2003;44(2):233–242.
  • Hankins HM, Baldridge RD, Xu P, et al. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic. 2015;16(1):35–47.
  • Jiang J, Serinkan BF, Tyurina YY, et al. Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria. Free Radic Biol Med. 2003;35(7):814–825.
  • Jain SK. In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats. J Clin Invest. 1985;76(1):281–286.
  • Stafford JH, Thorpe PE. Increased exposure of phosphatidylethanolamine on the surface of tumor vascular endothelium. Neoplasia. 2011;13(4):299–308.
  • Marconescu A, Thorpe PE. Coincident exposure of phosphatidylethanolamine and anionic phospholipids on the surface of irradiated cells. Biochim Biophys Acta. 2008;1778(10):2217–2224.
  • van Meer G. Dynamic transbilayer lipid asymmetry. Cold Spring Harb Perspect Biol. 2011;3(5):a004671–a004671.
  • Song H, Bao S, Lei X, et al. Ramanadham S. Evidence for proteolytic processing and stimulated organelle redistribution of iPLA(2)beta. Biochim Biophys Acta. 2010;1801(5):547–558.
  • Winstead MV, Balsinde J, Dennis EA. Calcium-independent phospholipase A(2): structure and function. Biochim Biophys Acta. 2000;1488(1–2):28–39.
  • Deng X, Wang J, Jiao L, et al. iPLA2beta deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling. Biochim Biophys Acta. 2016;1861(5):449–461.
  • Otto AC, Gan-Schreier H, Zhu X, et al. Group via phospholipase A2 deficiency in mice chronically fed with high-fat-diet attenuates hepatic steatosis by correcting a defect of phospholipid remodeling. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(5):662–676.
  • Zhu X, Gan-Schreier H, Otto AC, et al. iPLA2β deficiency in mice fed with MCD diet does not correct the defect of phospholipid remodeling but attenuates hepatocellular injury via an inhibition of lipid uptake genes. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(5):677–687.
  • Zhao M. Lantibiotics as probes for phosphatidylethanolamine. Amino Acids. 2011;41(5):1071–1079.
  • Hullin-Matsuda F, Makino A, Murate M, et al. Probing phosphoethanolamine-containing lipids in membranes with duramycin/cinnamycin and aegerolysin proteins. Biochimie. 2016;130:81–90.
  • Dundas CM, Demonte D, Park S. Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol. 2013;97(21):9343–9353.
  • Bao S, Song H, Wohltmann M, et al. Insulin secretory responses and phospholipid composition of pancreatic islets from mice that do not express group via phospholipase A2 and effects of metabolic stress on glucose homeostasis. J Biol Chem. 2006;281(30):20958–20973.
  • Masuzawa Y, Sugiura T, Sprecher H, et al. Selective acyl transfer in the reacylation of brain glycerophospholipids. Comparison of three acylation systems for 1-alk-1'-enylglycero-3-phosphoethanolamine, 1-acylglycero-3-phosphoethanolamine and 1-acylglycero-3-phosphocholine in rat brain microsomes. Biochim Biophys Acta. 1989;1005(1):1–12.
  • Yamashita A, Hayashi Y, Matsumoto N, et al. Coenzyme-A-independent transacylation system; possible involvement of phospholipase A2 in transacylation. Biology (Basel). 2017;6(4):23.
  • Jungalwala FB, Dawson RM. Phospholipid synthesis and exchange in isolated liver cells. Biochem J. 1970;117(3):481–490.
  • Sundler R, Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem. 1975;250(9):3359–3367.
  • Gil-de-Gómez L, Astudillo AM, Guijas C, et al. Cytosolic group IVA and calcium-independent group via phospholipase A2s act on distinct phospholipid pools in zymosan-stimulated mouse peritoneal macrophages. J Immunol. 2014;192(2):752–762.
  • Ye G, Yang B-C, Gao H, et al. Metabolomics insights into oleate-induced disorders of phospholipid metabolism in macrophages. J Nutr. 2021;151(3):503–512.
  • Maulik N, Kagan VE, Tyurin VA, et al. Redistribution of phosphatidylethanolamine and phosphatidylserine precedes reperfusion-induced apoptosis. Am J Physiol. 1998;274(1):H242–H248.
  • Li J, Gray BD, Pak KY, et al. Targeting phosphatidylethanolamine and phosphatidylserine for imaging apoptosis in cancer. Nucl Med Biol. 2019;78–79:23–30.
  • Sarti P, Molinari A, Arancia G, et al. A modified spectroscopic method for the determination of the transbilayer distribution of phosphatidylethanolamine in soya-bean asolectin small unilamellar vesicles. Biochem J. 1995;312(2):643–648.
  • Thomas CP, Clark SR, Hammond VJ, et al. Identification and quantification of aminophospholipid molecular species on the surface of apoptotic and activated cells. Nat Protoc. 2014;9(1):51–63.
  • Li Z, Wells CW, North PE, et al. Phosphatidylethanolamine at the luminal endothelial surface–implications for hemostasis and thrombotic autoimmunity. Clin Appl Thromb Hemost. 2011;17:158–163.
  • Zhao M, Li Z, Bugenhagen S. 99mTc-labeled duramycin as a novel phosphatidylethanolamine-binding molecular probe. J Nucl Med. 2008;49(8):1345–1352.
  • Elvas F, Stroobants S, Wyffels L. Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis. Apoptosis. 2017;22(8):971–987.
  • Bi H, Krausz KW, Manna SK, et al. Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem. 2013;405(15):5279–5289.
  • Clark SR, Thomas CP, Hammond VJ, et al. Characterization of platelet aminophospholipid externalization reveals fatty acids as molecular determinants that regulate coagulation. Proc Natl Acad Sci U S A. 2013;110(15):5875–5880.
  • Raval J, Lyman S, Nitta T, et al. Basal reactive oxygen species determine the susceptibility to apoptosis in cirrhotic hepatocytes. Free Radic Biol Med. 2006;41(11):1645–1654.
  • Berry A, Marconi M, Musillo C, et al. Trehalose administration in C57BL/6N old mice affects healthspan improving motor learning and brain anti-oxidant defences in a sex-dependent fashion: a pilot study. Exp Gerontol. 2020;129:110755.
  • Sobocanec S, Balog T, Kusić B, et al. Differential response to lipid peroxidation in male and female mice with age: correlation of antioxidant enzymes matters. Biogerontology. 2008;9(5):335–343.
  • Borrás C, Sastre J, García-Sala D, et al. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med. 2003;34(5):546–552.
  • Sobocanec S, Balog T, Sverko V, et al. Sex-dependent antioxidant enzyme activities and lipid peroxidation in ageing mouse brain. Free Radic Res. 2003;37(7):743–748.
  • Conde de la Rosa L, Schoemaker MH, Vrenken TE, et al. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J Hepatol. 2006;44(5):918–929.
  • Czaja MJ, Liu H, Wang Y. Oxidant-induced hepatocyte injury from menadione is regulated by ERK and AP-1 signaling. Hepatology. 2003;37(6):1405–1413.
  • Shertzer HG, Låstbom L, Sainsbury M, et al. Menadione-mediated membrane fluidity alterations and oxidative damage in rat hepatocytes. Biochem Pharmacol. 1992;43(10):2135–2141.
  • Tepper AD, Ruurs P, Wiedmer T, et al. Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. J Cell Biol. 2000;150(1):155–164.
  • Iwamoto K, Hayakawa T, Murate M, et al. Curvature-dependent recognition of ethanolamine phospholipids by duramycin and cinnamycin. Biophys J. 2007;93(5):1608–1619.
  • Aussel C, Pelassy C, Breittmayer JP. CD95 (fas/APO-1) induces an increased phosphatidylserine synthesis that precedes its externalization during programmed cell death. FEBS Lett. 1998;431(2):195–199.
  • Cui Z, Houweling M. Phosphatidylcholine and cell death. Biochim Biophys Acta. 2002;1585(2–3):87–96.
  • Yen CL, Mar MH, Zeisel SH. Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J. 1999;13(1):135–142.
  • Starčević K, Filipović N, Šperanda M, et al. The influence of sex and gonadectomy on hepatic and brain fatty acid composition, lipogenesis and β-oxidation. J Anim Physiol Anim Nutr (Berl). 2017;101(4):649–657.
  • Poyton MF, Sendecki AM, Cong X, et al. Cu(2+) binds to phosphatidylethanolamine and increases oxidation in lipid membranes. J Am Chem Soc. 2016;138(5):1584–1590.
  • Guo L, Davies SS. Bioactive aldehyde-modified phosphatidylethanolamines. Biochimie. 2013;95(1):74–78.
  • Pohl EE, Jovanovic O. The role of phosphatidylethanolamine adducts in modification of the activity of membrane proteins under oxidative stress. Molecules. 2019;24(24):4545.
  • Simhadri VR, Andersen JF, Calvo E, et al. Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood. 2012;119(12):2799–2809.
  • Lingwood CA, Huesca M, Kuksis A. The glycerolipid receptor for Helicobacter pylori (and exoenzyme S) is phosphatidylethanolamine. Infect Immun. 1992;60(6):2470–2574.
  • Foster DB, Abul-Milh M, Huesca M, et al. Enterohemorrhagic Escherichia coli induces apoptosis which augments bacterial binding and phosphatidylethanolamine exposure on the plasma membrane outer leaflet. Infect Immun. 2000;68(6):3108–3115.
  • Inhoffen J, Tuma-Kellner S, Straub B, et al. Deficiency of iPLA2β primes immune cells for proinflammation: potential involvement in age-related mesenteric lymph node lymphoma. Cancers (Basel). 2015;7(4):2427–2442.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.