192
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Low-intensity ultrasound (LIUS) differentially modulates mitochondrial reactive oxygen species (mtROS) generation by three different chemicals in PC12 cells

, , &
Pages 1037-1047 | Received 19 Jul 2021, Accepted 21 Nov 2021, Published online: 09 Dec 2021

References

  • Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–167.
  • Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12(4):537–577.
  • RimessiPreviati AM, Nigro F, et al. Mitochondrial reactive oxygen species and inflammation: molecular mechanisms, diseases and promising therapies. Int J Biochem Cell Biol. 2016;81(Pt B):281–293.
  • Okun JG, Lümmen P, Brandt U. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J. Biol. Chem. 1999;274(5):2625–2630.
  • Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta. 2010;1802(1):29–44.
  • Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980;191(2):421–427.
  • Tada-Oikawa S, Hiraku Y, Kawanishi M, et al. Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis. Life Sci. 2003;73(25):3277–3288.
  • Bai Q, He J, Qiu J, et al. Rotenone induces KATP channel opening in PC12 cells in association with the expression of tyrosine hydroxylase. Oncology Rep. 2012;28(4):1376–1384.
  • Li N, Ragheb K, Lawler G, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 2003;278(10):8516–8525.
  • Adam-Vizi V, Starkov AA. Calcium and mitochondrial reactive oxygen species generation: how to read the facts. J. Alzheimer’s Dis. 2010;20(s2):S413–S426.
  • WongSteenbergen RC, Murphy E. Mitochondrial permeability transition pore and calcium handling. Methods Mol Biol. 2012;810:235–242.
  • Bonanno G, Sala R, Cancedda L, et al. Release of dopamine from human neocortex nerve terminals evoked by different stimuli involving extra- and intraterminal calcium. Br J Pharmacol. 2000;129(8):1780–1786.
  • Marengo B, De Ciucis C, Verzola D, et al. Mechanisms of BSO (L-buthionine-S,R-sulfoximine)-induced cytotoxic effects in neuroblastoma, free radic. Free Radic Biol Med. 2008;44(3):474–482.
  • Karmacharya MB, Kim KH, Kim SY, et al. Low intensity ultrasound inhibits brain edema formation in rats: potential action on AQP4 membrane localization. Neuropathol Appl Neurobiol. 2015;41(4):e80-94–e94.
  • Chung JI, Barua S, Choi BH, et al. Anti-inflammatory effect of low intensity ultrasound (LIUS) on complete Freund’s adjuvant-induced arthritis synovium. Osteoarthritis Cartilage. 2012;20(4):314–322.
  • Kim NK, Kim CY, Choi MJ, et al. Effects of low-intensity ultrasound on oxidative damage in retinal pigment epithelial cells in vitro. Ultrasound Med. Biol. 2015;41(5):1363–1371.
  • Karmacharya MB, Hada B, Park SR, et al. Low-intensity ultrasound reduces high glucose-induced nitric oxide generation in retinal pigment epithelial cells. Ultrasound Med Biol. 2018;44(3):647–656.
  • Choi BH, Kim KH, Karmacharya MB, et al. Low-intensity ultrasound in stem cells and tissue engineering. In: Cell and molecular biology and imaging of stem cells. New York: John Wiley & Sons, Inc.; 2014. pp. 45–65. https://doi.org/http://dx.doi.org/10.13075/mp.5893.00806.
  • Karmacharya MB, Hada B, Park SR, et al. Low-intensity ultrasound decreases alpha-synuclein aggregation via attenuation of mitochondrial reactive oxygen species in MPP(+)-treated PC12 cells. Mol Neurobiol. 2017;54(8):6235–6244.
  • Johns LD. Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis. J Athl Train. 2002;37(3):293–299.
  • Giráldez-Pérez R, Antolín-Vallespín MM, Muñoz MD, et al. Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol Commun. 2014;2:176.
  • Hada B, Karmacharya MB, Park SR, et al. Low-intensity ultrasound decreases ischemia-induced edema by inhibiting N-methyl-d-aspartic acid receptors, can. Can J Neurol Sci. 2018;45(6):675–681.
  • Greenamyre JT, Sherer TB, Betarbet R, et al. Complex I and Parkinson’s disease. IUBMB Life. 2001;52(3–5):135–141.
  • Marella M, Seo BB, Yagi T, et al. Parkinson’s disease and mitochondrial complex I: a perspective on the Ndi1 therapy. J Bioenerg Biomembr. 2009;41(6):493–497.
  • Keane PC, Kurzawa M, Blain PG, et al. Mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis. 2011;2011(2011):716871.
  • Sazanov LA. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol. 2015;16(6):375–388.
  • Mimaki M, Wang X, McKenzie M, et al. Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta. 2012;1817(6):851–862.
  • Sharpley MS, Hirst J. The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2. J Biol Chem. 2006;281(46):34803–34809.
  • Schulte M, Mattay D, Kriegel S, et al. Inhibition of Escherichia coli respiratory complex I by Zn(2). Biochemistry. 2014;53(40):6332–6339.
  • Zhang X, Rojas JC, Gonzalez-Lima F. Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotox Res. 2006;9(1):47–57.
  • Wen Y, Li W, Poteet EC, et al. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem. 2011;286(18):16504–16515.
  • Liao XD, Wang XH, Jin HJ, et al. Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts. Cell Res. 2004;14(1):16–26.
  • Ali MH, Pearlstein DP, Mathieu CE, et al. Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. Am J Physiol Lung Cell Mol Physiol. 2004;287(3):L486–496.
  • Zhou J-X, Liu Y-J, Chen X, et al. Low-intensity pulsed ultrasound protects retinal ganglion cell from optic nerve injury induced apoptosis via yes associated protein. Front Cell Neurosci. 2018;12:160.
  • Deng L, Liu M, Sheng D, et al. Low-intensity focused ultrasound-augmented Cascade chemodynamic therapy via boosting ROS generation. Biomaterials. 2021;271:120710.
  • Kaur H, Siraki AG, Uludağ H, et al. Role of reactive oxygen species during low-intensity pulsed ultrasound application in MC-3 T3 E1 pre-osteoblast cell culture. Ultrasound Med Biol. 2017;43(11):2699–2712.
  • Kaur H, Siraki A, Sharma GM, et al. Reactive oxygen species mediate therapeutic ultrasound-induced mitogen-activated protein kinase activation in C28/I2 chondrocytes. Ultrasound Med Biol. 2018;44(10):2105–2114.
  • Sai Y, Wu Q, Le W, et al. Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicol In Vitro. 2008;22(6):1461–1468.
  • Xiong N, Long X, Xiong J, et al. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit Rev Toxicol. 2012;42(7):613–632.
  • Cali T, Ottolini D, Brini M. Mitochondrial Ca(2+) and neurodegeneration. Cell Calcium. 2012;52(1):73–85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.