421
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Prevention of ferroptosis in acute scenarios: an in vitro study with classic and novel anti-ferroptotic compounds

, , ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 1062-1079 | Received 10 Jun 2021, Accepted 08 Dec 2021, Published online: 19 Jan 2022

References

  • Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072.
  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–282.
  • Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73(11–12):2195–2209.
  • Sun L, Dong H, Zhang W, et al. Lipid peroxidation, GSH depletion, and SLC7A11 inhibition are common causes of EMT and ferroptosis in A549 cells, but different in specific mechanisms. DNA Cell Biol. 2021;40(2):172–183.
  • Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 2016;113(34):E4966–E4975.
  • Stoyanovsky DA, Tyurina YY, Shrivastava I, et al. Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? Free Radic Biol Med. 2019;133:153–161.
  • Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–1191.
  • Jelinek A, Heyder L, Daude M, et al. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med. 2018;117:45–57. Epub 2018 Jan 31.
  • Conrad M, Friedmann Angeli JP. Glutathione peroxidase 4 (Gpx4) and ferroptosis: what’s so special about it? Mol cell oncol. 2015;2(3):e995047.
  • Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–698.
  • Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 2020;6(1):41–53.
  • Chen D, Chu B, Yang X, et al. iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun. 2021;12(1):3644.
  • Capelletti MM, Manceau H, Puy H, et al. Ferroptosis in liver diseases: an overview. IJMS. 2020;21(14):4908.
  • Alim I, Caulfield JT, Chen Y, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019;177(5):1262.e25–1279.e25.
  • Mahoney-Sánchez L, Bouchaoui H, Ayton S, et al. Ferroptosis and its potential role in the physiopathology of parkinson’s disease. Prog Neurobiol. 2021;196:101890.
  • Reichert CO, de Freitas FA, Sampaio-Silva J, et al. Ferroptosis mechanisms involved in neurodegenerative diseases. IJMS. 2020;21(22):8765.
  • Ye LF, Chaudhary KR, Zandkarimi F, et al. Radiation-Induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis Inducers. ACS Chem Biol. 2020;15(2):469–484.
  • Borawski B, Malyszko J. Iron, ferroptosis, and new insights for prevention in acute kidney injury. Adv Med Sci. 2020;65(2):361–370.
  • Kim KM, Cho SS, Ki SH. Emerging roles of ferroptosis in liver pathophysiology. Arch Pharm Res. 2020;43(10):985–996.
  • Kahn-Kirby AH, Amagata A, Maeder CI, et al. Targeting ferroptosis: a novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoS One. 2019;14(3):e0214250.
  • Skouta R, Dixon SJ, Wang J, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc. 2014;136(12):4551–4556.
  • Miotto G, Rossetto M, Di Paolo ML, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020;28:101328.
  • Anthonymuthu TS, Tyurina YY, Sun WY, et al. Resolving the paradox of ferroptotic cell death: ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis. Redox Biol. 2021;38:101744.
  • Hofmans S, Vanden Berghe T, Devisscher L, et al. Novel ferroptosis inhibitors with improved potency and ADME properties. J Med Chem. 2016;59(5):2041–2053.
  • Devisscher L, Van Coillie S, Hofmans S, et al. Discovery of novel, drug-like ferroptosis inhibitors with in vivo efficacy. J Med Chem. 2018;61(22):10126–10140.
  • Smith WS. Pathophysiology of focal cerebral ischemia: a therapeutic perspective. J Vasc Interv Radiol. 2004;15(1):S3–S12.
  • Albrecht P, Lewerenz J, Dittmer S, et al. Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc- as a neuroprotective drug target. CNS Neurol Disord Drug Targets. 2010;9(3):373–382.
  • Hsu CY, Ahmed SH, Lees KR. The therapeutic time window-theoretical and practical considerations. J Stroke Cerebrovasc Dis. 2000;9(6):24–31.
  • Neitemeier S, Jelinek A, Laino V, et al. BID links ferroptosis to mitochondrial cell death pathways. Redox Biol. 2017;12:558–570.
  • Farina M, Campos F, Vendrell I, et al. Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicol Sci. 2009;112(2):416–426.
  • Santos DB, Peres KC, Ribeiro RP, et al. Probucol, a lipid-lowering drug, prevents cognitive and hippocampal synaptic impairments induced by amyloid β peptide in mice. Exp Neurol. 2012;233(2):767–775.
  • Santos DB, Colle D, Moreira ELG, et al. Probucol mitigates streptozotocin-induced cognitive and biochemical changes in mice. Neuroscience. 2015;284:590–600.
  • Colle D, Santos DB, Moreira EL, et al. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS One. 2013a;8(6):e67658.
  • Ribeiro RP, Moreira EL, Santos DB, et al. Probucol affords neuroprotection in a 6-OHDA mouse model of Parkinson’s disease. Neurochem Res. 2013;38(3):660–668.
  • Troendle G, Gueriguian J, Sobel S, et al. Probucol and the QT interval. Lancet. 1982;319(8282):1179.
  • Bueno DC, Canto RFS, de Souza V, et al. New probucol analogues inhibit ferroptosis, improve mitochondrial parameters, and induce glutathione peroxidase in HT22 cells. Mol Neurobiol. 2020;57(8):3273–3290.
  • Colle D, Santos DB, Hartwig JM, et al. Succinobucol versus probucol: higher efficiency of succinobucol in mitigating 3-NP-induced brain mitochondrial dysfunction and oxidative stress in vitro. Mitochondrion. 2013b;13(2):125–133.
  • Colle D, Santos DB, Hartwig JM, et al. Succinobucol, a lipid-lowering drug, protects against 3-nitropropionic acid-induced mitochondrial dysfunction and oxidative stress in SH-SY5Y cells via upregulation of glutathione levels and glutamate cysteine ligase activity. Mol Neurobiol. 2016;53(2):1280–1295.
  • Quispe RL, Canto RFS, Jaramillo ML, et al. Design, synthesis, and in vitro evaluation of a novel probucol derivative: protective activity in neuronal cells through GPx upregulation. Mol Neurobiol. 2018;55(10):7619–7634.
  • Santos DB, Colle D, Moreira EL, et al. Succinobucol, a non-statin hypocholesterolemic drug, prevents premotor symptoms and nigrostriatal neurodegeneration in an experimental model of Parkinson’s disease. Mol Neurobiol. 2017;54(2):1513–1530.
  • Mao SJ, Yates MT, Rechtin AE, et al. Antioxidant activity of probucol and its analogues in hypercholesterolemic Watanabe rabbits. J Med Chem. 1991;34(1):298–302.
  • Santos DB, Colle D, Moreira ELG, et al. Probucol protects neuronal cells against Peroxide-Induced damage and directly activates glutathione peroxidase-1. Mol Neurobiol. 2020;57(8):3245–3257.
  • Fellin R, Gasparotto A, Valerio G, et al. Effect of probucol treatment on lipoprotein cholesterol and drug levels in blood and lipoproteins in familial hypercholesterolemia. Atherosclerosis. 1986;59(1):47–56.
  • Tardif JC, McMurray JJ, Klug E, et al. Aggressive reduction of inflammation stops events (ARISE) trial investigators. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371(9626):1761–1768.
  • Nieminen A-L, Gores GJ, Bond JM, et al. A novel cytotoxicity screening assay using a multiwell fluorescence scanner. Toxicol Appl Pharmacol. 1992;115(2):147–155.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, v. 1983;65(1–2):55–63.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77.
  • Cooper AJL. Role of astrocytes in maintaining cerebral glutathione homeostasis and in protecting the brain against xenobiotics and oxidative stress. In: The role of glutathione in the nervous system. Washington (DC): Taylor and Francis; 1998. p. 91–115.
  • Naguib YM. A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal Biochem. 1998;265(2):290–298.
  • Cos P, Hermans N, Calomme M, et al. Comparative study of eight well-known polyphenolic antioxidants. J Pharm Pharmacol. 2003;55(9):1291–1297.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Curr Top Med Chem. 2001;1(6):497–506.
  • Drew R, Miners JO. The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem Pharmacol. 1984;33(19):2989–2994.
  • Franco R, Cidlowski JA. SLCO/OATP-like transport of glutathione in FasL-induced apoptosis: glutathione efflux is coupled to an organic anion exchange and is necessary for the progression of the execution phase of apoptosis. J Biol Chem. 2006;281(40):29542–29557.
  • Sun Y, Zheng Y, Wang C, et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis. 2018;9(7):753.
  • Azouzi S, Santuz H, Morandat S, et al. Antioxidant and membrane binding properties of serotonin protect lipids from oxidation. Biophys J. 2017; 112(9):1863–1873.
  • Shah R, Farmer LA, Zilka O, et al. Beyond DPPH: use of fluorescence-enabled inhibited autoxidation to predict oxidative cell death rescue. Cell Chem Biol. 2019;26(11):1594–1607.
  • Stockwell BR, Jiang X. The chemistry and biology of ferroptosis. Cell Chem Biol. 2020; 27(4):365–375.
  • Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–152.
  • Reich HJ, Hondal RJ. Why nature chose selenium. ACS Chem Biol. 2016;11(4):821–841.
  • de Bem AF, Fiuza B, Calcerrada P, et al. Protective effect of diphenyl diselenide against peroxynitrite-mediated endothelial cell death: a comparison with ebselen. Nitric Oxide. 2013 May 31;31:20–30.
  • Barbosa NV, Nogueira CW, Nogara PA, et al. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics. 2017;9(12):1703–1734.
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.