148
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mechanistic insight into the free radical scavenging and xanthine oxidase (XO) inhibitor potent of monoacetylphloroglucinols (MAPGs)

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 174-194 | Received 01 Feb 2023, Accepted 10 Jun 2023, Published online: 27 Jun 2023

References

  • Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763.
  • Wang Y, Li S, Li C. Perspectives of new advances in the pathogenesis of vitiligo: from oxidative stress to autoimmunity. Med Sci Monit. 2019;25:1017–1023. doi: 10.12659/MSM.914898.
  • Sies H. Oxidative stress: eustress and distress in redox homeostasis. In: Stress: physiology, biochemistry, and pathology. Academic Press; 2019. p. 153–163.
  • Purushothaman A, Teena Rose KS, Jacob JM, et al. Curcumin analogues with improved antioxidant properties: a theoretical exploration. Food Chem. 2022;373(Pt B):131499. doi: 10.1016/j.foodchem.2021.131499.
  • Garcia-Mendoza MDP, Espinosa-Pardo FA, Savoire R, et al. Improvement of the oxidative stability of camelina oil by enrichment with phospholipid-quercetin formulations. Food Chem. 2021;341(Pt 1):128234. doi: 10.1016/j.foodchem.2020.128234.
  • Mammino L. Computational study of acylphloroglucinols: an investigation with many branches. Pure Appl Chem. 2019;91(4):597–607. doi: 10.1515/pac-2018-0909.
  • Kusumaningsih T, Prasetyo WE, Istiqomah A, et al. Sustainable synthesis of silver nanoparticles with enhanced anticancer, antibacterial, and antioxidant properties mediated by dimeric 2,4-diacetyl phloroglucinol: experimental and computational insights. Surf Interfaces. 2023;36:102545. doi: 10.1016/j.surfin.2022.102545.
  • Gong L, Tan H, Chen F, et al. Novel synthesised 2, 4-DAPG analogues: antifungal activity, mechanism and toxicology. Sci Rep. 2016;6:32266. doi: 10.1038/srep32266.
  • Kusumaningsih T, Prasetyo WE, Wibowo FR, et al. Toward an efficient and eco-friendly route for the synthesis of dimeric 2,4-diacetyl phloroglucinol and its potential as a SARS-CoV-2 main protease antagonist insight from in silico studies. New J Chem. 2021;45(17):7830–7843. doi: 10.1039/D0NJ06114J.
  • Prasetyo WE, Kusumaningsih T, Triadmojo B, et al. Investigation of the dual role of acyl phloroglucinols as a new hope for antibacterial and anti-SARS-CoV-2 agents employing integrated in vitro and multi-phase in silico approaches. J Biomol Struct Dyn. 2023;1–18. doi: 10.1080/07391102.2023.2186712.
  • Prasetyo WE, Kusumaningsih T, Firdaus M. Highly efficient and green synthesis of diacylphloroglucinol over treated natural zeolite mordenite and the optimization using response surface method (RSM). Synth Commun. 2019;49(23):3352–3372. doi: 10.1080/00397911.2019.1666282.
  • Kusumaningsih T, Prasetyo WE, Firdaus M. A greatly improved procedure for the synthesis of an antibiotic-drug candidate 2,4-diacetylphloroglucinol over silica sulphuric acid catalyst: multivariate optimisation and environmental assessment protocol comparison by metrics. RSC Adv. 2020;10(53):31824–31837. doi: 10.1039/d0ra05424k.
  • Kusumaningsih T, Firdaus M, Artanti AN, et al. Highly efficient one pot synthesis of triacetylphloroglucinol: an analogue of acylphloroglucinol natural product. IOP Conf Ser Mater Sci Eng. 2019;578(1):012057. doi: 10.1088/1757-899X/578/1/012057.
  • Prasetyo WE, Kusumaningsih T, Firdaus M, et al. Diacylphloroglucinol derivatives as antioxidant agents: green synthesis, optimisation, in vitro, and in silico evaluation. Nat Prod Res. 2021;36:1–6.
  • Chauthe SK, Bharate SB, Periyasamy G, et al. One pot synthesis and anticancer activity of dimeric phloroglucinols. Bioorg Med Chem Lett. 2012;22(6):2251–2256. doi: 10.1016/j.bmcl.2012.01.089.
  • Zhao MM, Lyu N, Wang D, et al. PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24. Sci Rep. 2020;10(1):4296. doi: 10.1038/s41598-020-60555-9.
  • Biessy A, Filion M. Phloroglucinol derivatives in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, and functions. Metabolites. 2021;11(3):182. doi: 10.3390/metabo11030182.
  • Wu C, Li Y, Yi X, et al. Three new acylphloroglucinol glucosides from the roots of Lysidice rhodostegia and their antioxidant activities. Carbohydr Res. 2020;492:108012. doi: 10.1016/j.carres.2020.108012.
  • Zhou X, Xu W, Li Y, et al. Anti-inflammatory, antioxidant, and anti-nonalcoholic steatohepatitis acylphloroglucinol meroterpenoids from Hypericum bellum flowers. J Agric Food Chem. 2021;69(2):646–654. doi: 10.1021/acs.jafc.0c05417.
  • Hamiche S, Bensouici C, Messaoudi A, et al. Antioxidant and structure–activity relationship of acylphloroglucinol derivatives from the brown alga Zonaria tournefortii. Monatsh Chem. 2021;152(4):431–440. doi: 10.1007/s00706-021-02748-0.
  • Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011;125(2):288–306. doi: 10.1016/j.foodchem.2010.08.012.
  • Mittal A, Kakkar R. The antioxidant potential of retrochalcones isolated from liquorice root: a comparative DFT study. Phytochemistry. 2021;192:112964. doi: 10.1016/j.phytochem.2021.112964.
  • Rajan VK, Muraleedharan K. A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, gallic acid. Food Chem. 2017;220:93–99. doi: 10.1016/j.foodchem.2016.09.178.
  • Veselinović JB, Veselinović AM, Vitnik ŽJ, et al. Antioxidant properties of selected 4-phenyl hydroxycoumarins: integrated in vitro and computational studies. Chem Biol Interact. 2014;214:49–56. doi: 10.1016/j.cbi.2014.02.010.
  • Amić A, Marković Z, Marković JMD, et al. The 2H+/2e − free radical scavenging mechanisms of uric acid: thermodynamics of NH bond cleavage. Comput Theor Chem. 2016;1077:2–10. doi: 10.1016/j.comptc.2015.09.003.
  • Amić A, Marković Z, Klein E, et al. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives. Food Chem. 2018;246:481–489. doi: 10.1016/j.foodchem.2017.11.100.
  • Dao DQ, Phan TTT, Nguyen TLA, et al. Insight into antioxidant and photoprotective properties of natural compounds from marine fungus. J Chem Inf Model. 2020;60(3):1329–1351. doi: 10.1021/acs.jcim.9b00964.
  • Dharmaraja AT. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem. 2017;60(8):3221–3240. doi: 10.1021/acs.jmedchem.6b01243.
  • Zheng Y-Z, Deng G, Guo R, et al. Effects of different ester chains on the antioxidant activity of caffeic acid. Bioorg Chem. 2020;105:104341. doi: 10.1016/j.bioorg.2020.104341.
  • Mittal A, Vashistha VK, Das DK. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review. Free Radic Res. 2022;56(5–6):378–397. doi: 10.1080/10715762.2022.2120396.
  • Abuelizz HA, Taie HAA, Bakheit AH, et al. Investigation of 4-hydrazinobenzoic acid derivatives for their antioxidant activity: in vitro screening and DFT study. ACS Omega. 2021;6(47):31993–32004. doi: 10.1021/acsomega.1c04772.
  • Mittal A, Kakkar R. The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, towards various ROS: a DFT thermodynamic study. Free Radic Res. 2020;54(10):777–786. doi: 10.1080/10715762.2020.1849670.
  • Altun A, Izsák R, Bistoni G. Local energy decomposition of coupled‐cluster interaction energies: interpretation, benchmarks, and comparison with symmetry‐adapted perturbation theory. Int J Quantum Chem. 2021;121(3):e26339. doi: 10.1002/qua.26339.
  • Martynov AG, Mack J, May AK, et al. Methodological survey of simplified TD-DFT methods for fast and accurate interpretation of UV–vis–NIR spectra of phthalocyanines. ACS Omega. 2019;4(4):7265–7284. doi: 10.1021/acsomega.8b03500.
  • Kossmann S, Neese F. Efficient structure optimization with second-order many-body perturbation theory: the RIJCOSX-MP2 method. J Chem Theory Comput. 2010;6(8):2325–2338. doi: 10.1021/ct100199k.
  • Prasetyo WE, Purnomo H, Sadrini M, et al. Identification of potential bioactive natural compounds from Indonesian medicinal plants against 3-chymotrypsin-like protease (3CLpro) of SARS-CoV-2: molecular docking, ADME/T, molecular dynamic simulations, and DFT analysis. J Biomol Struct Dyn. 2022;41:1–18.
  • Andraos J, Matlack AS. Introduction to green chemistry. CRC Press; 2022.
  • Mohamed AAA, Youssef NH, El-Shahir AA. In vitro antioxidant and antifungal activities of different solvent extracts of leaf peel and gel of Aloe succotrina and their bio-control of leaf spot disease of Phaseolus vulgaris seedlings. S Afr J Bot. 2022;147:1112–1123. doi: 10.1016/j.sajb.2022.04.042.
  • Boulebd H. DFT study of the antiradical properties of some aromatic compounds derived from antioxidant essential oils: C–H bond vs. O–H bond. Free Radic Res. 2019;53(11–12):1125–1134. doi: 10.1080/10715762.2019.1690652.
  • Mammino L. Intramolecular hydrogen bonding patterns, conformational preferences and molecular properties of dimeric acylphloroglucinols: an ab initio and DFT study. J Mol Struct. 2019;1176:488–500. doi: 10.1016/j.molstruc.2018.07.013.
  • Thbayh DK, Fiser B. Computational study of synthetic and natural polymer additives—antioxidant potential of BHA, TBHQ, BHT, and curcumin. Polym Degrad Stab. 2022;201:109979. doi: 10.1016/j.polymdegradstab.2022.109979.
  • Michalík M, Poliak P, Lukeš V, et al. From phenols to quinones: thermodynamics of radical scavenging activity of para-substituted phenols. Phytochemistry. 2019;166:112077. doi: 10.1016/j.phytochem.2019.112077.
  • Xue Y, Teng Y, Chen M, et al. Antioxidant activity and mechanism of avenanthramides: double H+/e– processes and role of the catechol, guaiacyl, and carboxyl groups. J Agric Food Chem. 2021;69(25):7178–7189. doi: 10.1021/acs.jafc.1c01591.
  • Wang A, Lu Y, Du X, et al. A theoretical study on the antioxidant activity of uralenol and neouralenol scavenging two radicals. Struct Chem. 2018;29(4):1067–1075. doi: 10.1007/s11224-018-1090-8.
  • Mendes RA, Almeida SKC, Soares IN, et al. Evaluation of the antioxidant potential of myricetin 3-O-α-l-rhamnopyranoside and myricetin 4′-O-α-l-rhamnopyranoside through a computational study. J Mol Model. 2019;25(4):1–12. doi: 10.1007/s00894-019-3959-x.
  • Mendes RA, e Silva BLS, Takeara R, et al. Probing the antioxidant potential of phloretin and phlorizin through a computational investigation. J Mol Model. 2018;24(4):1–10. doi: 10.1007/s00894-018-3632-9.
  • Boulebd H. Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and trolox: experimental and theoretical study. J Mol Struct. 2020;1201:127210. doi: 10.1016/j.molstruc.2019.127210.
  • Kumar J, Kumar N, Sati N, et al. Antioxidant properties of ethenyl indole: DPPH assay and TDDFT studies. New J. Chem. 2020;44(21):8960–8970. doi: 10.1039/D0NJ01317J.
  • Zheng Y-Z, Deng G, Liang Q, et al. Antioxidant activity of quercetin and its glucosides from propolis: a theoretical study. Sci Rep. 2017;7:1–11.
  • Wang G, Xue Y, An L, et al. Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chem. 2015;171:89–97. doi: 10.1016/j.foodchem.2014.08.106.
  • Xue Y, Zheng Y, An L, et al. Density functional theory study of the structure–antioxidant activity of polyphenolic deoxybenzoins. Food Chem. 2014;151:198–206. doi: 10.1016/j.foodchem.2013.11.064.
  • Zheng Y-Z, Deng G, Chen D-F, et al. Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives: effects of the chain length and solvent. Food Chem. 2018;240:323–329. doi: 10.1016/j.foodchem.2017.07.133.
  • Lee CY, Sharma A, Semenya J, et al. Computational study of ortho-substituent effects on antioxidant activities of phenolic dendritic antioxidants. Antioxidants. 2020;9(3):189. doi: 10.3390/antiox9030189.
  • Shang Y, Li X, Li Z, et al. Theoretical study on the radical scavenging activity and mechanism of four kinds of gnetin molecule. Food Chem. 2022;378:131975. doi: 10.1016/j.foodchem.2021.131975.
  • Zhou W, Yu X, Liu Y, et al. Porous layer open‐tubular column with styrene and itaconic acid‐copolymerized polymer as stationary phase for capillary electrochromatography–mass spectrometry. Electrophoresis. 2021;42(24):2664–2671. doi: 10.1002/elps.202100148.
  • Wang Y, Li X, Sun X. The transformation mechanism and eco-toxicity evaluation of butylated hydroxyanisole in environment. Ecotoxicol Environ Saf. 2022;231:113179. doi: 10.1016/j.ecoenv.2022.113179.
  • Van Trang N, Thuy PT, Mai Thanh DT, et al. Benzofuran–stilbene hybrid compounds: an antioxidant assessment–a DFT study. RSC Adv. 2021;11(21):12971–12980. doi: 10.1039/D1RA01076J.
  • Thuy PT, Son NT. Thermodynamic and kinetic studies on antioxidant capacity of amentoflavone: a DFT (density functional theory) computational approach. Free Radic Res. 2022;56:1–10.
  • Hu Y, Wang Z, Shen C, et al. Influence of the pKa value on the antioxidant activity of licorice flavonoids under solvent‐mediated effects. Arch Pharm. 2023;356:e2200470.
  • Zhang N, Wu Y, Qiao M, et al. Structure–antioxidant activity relationships of dendrocandin analogues determined using density functional theory. Struct Chem. 2022;33(3):795–805. doi: 10.1007/s11224-022-01895-2.
  • Aseervatham G, Sivasudha T, Jeyadevi R, et al. Environmental factors and unhealthy lifestyle influence oxidative stress in humans—an overview. Environ Sci Pollut Res Int. 2013;20(7):4356–4369. doi: 10.1007/s11356-013-1748-0.
  • Du X, Li Y, Xia Y-L, et al. Insights into protein–ligand interactions: mechanisms, models, and methods. Int J Mol Sci. 2016;17(2):144. doi: 10.3390/ijms17020144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.