202
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Formation of free radicals in Chi-aroma Baijiu during aging process with fat pork

, , , , &
Pages 271-281 | Received 06 Apr 2023, Accepted 27 Jun 2023, Published online: 10 Jul 2023

References

  • Wei D, Deng P, Tian X, et al. Accelerating the oxidation of pork fat by illumination and fat oil for the production of Baijiu beverage. J Sci Food Agric. 2021;101(3):918–926. doi: 10.1002/jsfa.10699.
  • Fan H, Fan W, Xu Y. Characterization of key odorants in Chinese chixiang aroma-type liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies. J Agric Food Chem. 2015;63(14):3660–3668. doi: 10.1021/jf506238f.
  • Fang Y. Study of formation mechanism on dibasic acid in soybean-flavor liquor. South China University of Technology. 2012.
  • Chu T, Xie J, He S, et al. Evaluation of immersion using warm water on the removal of off-flavor from raw pork and its weight loss. Science and Technology of Food Industry. 2016;37(23):328–332 + 337.
  • Deng P. Study on accelerating the lipid oxidation in soaking pork fat, fat oil and fat oil gel. South China University of Technology. 2021.
  • Wei D, Li L, He S, et al. Improving the lipid oxidation in pork fat processing for Chi-aroma Baijiu through pretreatments and segmented soaking with liquor. LWT-Food Sci Technol. 2020;130:109624. doi: 10.1016/j.lwt.2020.109624.
  • Krawczyk H. The stilbene derivatives, nucleosides, and nucleosides modified by stilbene derivatives. Bioorg Chem. 2019;90:103073. doi: 10.1016/j.bioorg.2019.103073.
  • Patel Y, Rai D, Das K, et al. Ethanol in combination with oxidative stress significantly impacts mycobacterial physiology. J Bacteriol. 2020;202(23):e00222. doi: 10.1128/JB.00222-20.
  • Skotland T, Ljones T. Direct spectrophotometric detection of ascorbate free radical formed by dopamine beta-monooxygenase and by ascorbate oxidase. Biochim Biophys Acta. 1980;630(1):30–35. doi: 10.1016/0304-4165(80)90134-8.
  • Zhang Y, Li J, Bai J, et al. Dramatic enhancement of organics degradation and electricity generation via strengthening superoxide radical by using a novel 3D AQS/PPy-GF cathode. Water Res. 2017;125:259–269. doi: 10.1016/j.watres.2017.08.054.
  • Huang Y, Sinha A, Zhao H, et al. Real time detection of hazardous hydroxyl radical using an electrochemical approach. ChemistrySelect. 2019;4(43):12507–12511. doi: 10.1002/slct.201902512.
  • Chen Q, Xie Y, Xi J, et al. Characterization of lipid oxidation process of beef during repeated freeze-thaw by electron spin resonance technology and Raman spectroscopy. Food Chem. 2018;243:58–64. doi: 10.1016/j.foodchem.2017.09.115.
  • Bao Y, Zhu Y, Ren X, et al. Formation and inhibition of lipid alkyl radicals in roasted meat. Foods. 2020;9(5):572. doi: 10.3390/foods9050572.
  • Xie Y, Jiang S, Li M, et al. Evaluation on the formation of lipid free radicals in the oxidation process of peanut oil. LWT-Food Sci Technol. 2019;104:24–29. doi: 10.1016/j.lwt.2019.01.016.
  • Davies MJ. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods. 2016;109:21–30. doi: 10.1016/j.ymeth.2016.05.013.
  • Falch E, Velasco J, Aursand M, et al. Detection of radical development by ESR spectroscopy techniques for assessment of oxidative susceptibility of fish oils. Eur Food Res Technol. 2005;221(5):667–674. doi: 10.1007/s00217-005-0009-y.
  • Roman O, Maillard MN, Plessis C, et al. Electron spin resonance spectroscopy: a promising method for studying lipid oxidation in foods. Lipid Technology. 2010;22(4):87–90. doi: 10.1002/lite.201000009.
  • Troup GJ, Hutton DR, Hewitt DG, et al. Free radicals in red wine, but not in white? Free Radic Res. 1994;20(1):63–68. doi: 10.3109/10715769409145626.
  • Zhang QA, Shen Y, Fan XH, et al. Free radical generation induced by ultrasound in red wine and model wine: an EPR spin-trapping study. Ultrason Sonochem. 2015;27:96–101. doi: 10.1016/j.ultsonch.2015.05.003.
  • Liang SY, Zhang FJ, He SG, et al. Promoting lipid oxidation and release of volatiles of pork fat pulp by lipase, blue light with riboflavin in liquor immersion. J Food Sci. 2022;87(12):5276–5288. doi: 10.1111/1750-3841.16379.
  • Chen H, Cao P, Li B, et al. Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS. Food Chem. 2017;221:1434–1441. doi: 10.1016/j.foodchem.2016.11.008.
  • Koh E, Surh J. Food types and frying frequency affect the lipid oxidation of deep frying oil for the preparation of school meals in Korea. Food Chem. 2015;174:467–472. doi: 10.1016/j.foodchem.2014.11.087.
  • GB5009.227. 2016. National standards of the people’s republic of China. National Food Safety Standards. Determination of Peroxide Value in Food.
  • GB/T 24304. 2009. National standards of the people’s republic of China. National Food Safety Standards. Animal and vegetable fats and oils-Determination of anisidine value.
  • GB5009.229. 2016. National standards of the people’s republic of China. National Food Safety Standards. Determination of Acid Value in Food.
  • Mnari Bhouri A, Jrah Harzallah H, Dhibi M, et al. Nutritional fatty acid quality of raw and cooked farmed and wild sea bream (Sparus aurata). J Agric Food Chem. 2010;58(1):507–512. doi: 10.1021/jf902096w.
  • Chen H, Wang Y, Cao P, et al. Effect of temperature on thermal oxidation of palmitic acid studied by combination of EPR spin trapping technique and SPME-GC-MS/MS. Food Chem. 2017;234:439–444. doi: 10.1016/j.foodchem.2017.04.135.
  • Elias RJ, Andersen ML, Skibsted LH, et al. Identification of free radical intermediates in oxidized wine using electron paramagnetic resonance spin trapping. J Agric Food Chem. 2009;57(10):4359–4365. doi: 10.1021/jf8035484.
  • Stoyanovsky DA, Wu D, Cederbaum AI. Interaction of 1-hydroxyethyl radical with glutathione, ascorbic acid and α-tocopherol. Free Radic Biol Med. 1998;24(1):132–138. doi: 10.1016/s0891-5849(97)00205-0.
  • Wu J, Huo J, Huang M, et al. Structural characterization of a tetrapeptide from sesame Flavor-Type baijiu and its preventive effects against AAPH-Induced oxidative stress in HepG2 cells. J Agric Food Chem. 2017;65(48):10495–10504. doi: 10.1021/acs.jafc.7b04815.
  • Guo J, Lu A, Sun Y, et al. Purification and identification of antioxidant and angiotensin converting enzyme-inhibitory peptides from Guangdong glutinous rice wine. LWT-Food Science and Technology. 2022;169:113953. doi: 10.1016/j.lwt.2022.113953.
  • Xu ZC, Chen Y, Zhou ZH, et al. Study on healthy & functional compositions in jian’ nanchun liquor. Liquor-Making Science & Technology. 2008;5:41–44.
  • Sun X, Li W, Li R, et al. The antioxidative activity of sulfide and pyrazine compositions in Sesame-Flavor liquor. Liquor Making. 2013;40(4):57–60.
  • Kuzhanthaivelan S, Rajakumar B. Kinetic investigation of the reaction of ethylperoxy radicals with ethanol. Int. J. Chem. Kinet. 2021;53(2):274–286. doi: 10.1002/kin.21441.
  • Kozlowski D, Marsal P, Steel M, et al. Theoretical investigation of the formation of a new series of antioxidant depsides from the radiolysis of flavonoid compounds. Radiat Res. 2007;168(2):243–252. doi: 10.1667/RR0824.1.
  • Orlien V, Risbo J, Rantanen H, et al. Temperature-dependence of rate of oxidation of rapeseed oil encapsulated in a glassy food matrix. Food Chem. 2006;94(1):37–46. doi: 10.1016/j.foodchem.2004.10.047.
  • Shahidi F, Zhong Y. Lipid oxidation and improving the oxidative stability. Chem Soc Rev. 2010;39(11):4067–4079. doi: 10.1039/b922183m.
  • Tejero I, González-Lafont A, Lluch JM, et al. Photo-oxidation of lipids by singlet oxygen: a theoretical study. Chem Phys Lett. 2004;398(4-6):336–342. doi: 10.1016/j.cplett.2004.09.093.
  • Du L. Analysis of oxidation products of C18 unsaturated fatty acids in oils. Tianjin University of Science & Technology. 2019.
  • Kitaguchi H, Ohkubo K, Ogo S, et al. Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases. J Phys Chem A. 2006;110(5):1718–1725. doi: 10.1021/jp054648f.
  • Min DB, Boff JM. Chemistry and reaction of singlet oxygen in foods. Compr Rev Food Sci Food Saf. 2002;1(2):58–72. doi: 10.1111/j.1541-4337.2002.tb00007.x.
  • Doleiden FH, Fahrenholtz SR, Lamola AA, et al. Reactivity of cholesterol and some fatty acids toward singlet oxygen. Photochem Photobiol. 1974;20(6):519–521. doi: 10.1111/j.1751-1097.1974.tb06613.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.