221
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Association of circulatory PCSK-9 with biomarkers of redox imbalance and inflammatory cascades in the prognosis of diabetes and associated complications: a pilot study in the Indian population

ORCID Icon, ORCID Icon & ORCID Icon
Pages 294-307 | Received 20 Apr 2023, Accepted 11 Jul 2023, Published online: 22 Jul 2023

References

  • Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119.
  • Nabi R, Alvi SS, Saeed M, et al. Glycation and HMG-CoA reductase inhibitors: implication in diabetes and associated complications. Curr Diabetes Rev. 2019;15(3):213–223. doi: 10.2174/1573399814666180924113442.
  • Nabi R, Alvi SS, Shah A, et al. Ezetimibe attenuates experimental diabetes and renal pathologies via targeting the advanced glycation, oxidative stress and AGE-RAGE signalling in rats. Arch Physiol Biochem. 2021;129(4):831–846. doi: 10.1080/13813455.2021.1874996.
  • Ahmad P, Alvi SS, Iqbal D, et al. Insights into pharmacological mechanisms of polydatin in targeting risk factors-mediated atherosclerosis. Life Sci. 2020;254:117756. doi: 10.1016/j.lfs.2020.117756.
  • Alvi SS, Ansari IA, Khan I, et al. Potential role of lycopene in targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia. Free Radic Biol Med. 2017;108:394–403. doi: 10.1016/j.freeradbiomed.2017.04.012.
  • Waiz M, Alvi SS, Salman Khan M. Potential dual inhibitors of pcsk-9 and Hmg-R from natural sources in cardiovascular risk management. Excli J. 2022;21:47–76.
  • Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161–172. doi: 10.1016/j.cell.2015.01.036.
  • Nabi R, Alvi SS, Shah A, et al. Modulatory role of HMG-CoA reductase inhibitors and ezetimibe on LDL-AGEs-induced ROS generation and RAGE-associated signalling in HEK-293 cells. Life Sci. 2019;235:116823. doi: 10.1016/j.lfs.2019.116823.
  • Nabi R, Alvi SS, Khan RH, et al. Antiglycation study of HMG-R inhibitors and tocotrienol against glycated BSA and LDL: a comparative study. Int J Biol Macromol. 2018;116:983–992. doi: 10.1016/j.ijbiomac.2018.05.115.
  • Wang G, Liu Z, Li M, et al. Ginkgolide B mediated alleviation of inflammatory Cascades and altered lipid metabolism in HUVECs via targeting PCSK-9 expression and functionality. Biomed Res Int. 2019;2019:7284767. doi: 10.1155/2019/7284767.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–1070. doi: 10.1161/CIRCRESAHA.110.223545.
  • Butkowski EG, Jelinek HF. Hyperglycaemia, oxidative stress and inflammatory markers. Redox Rep. 2017;22(6):257–264. doi: 10.1080/13510002.2016.1215643.
  • Nabi R, Alvi SS, Alouffi S, et al. Amelioration of neuropilin-1 and RAGE/matrix metalloproteinase-2 pathway-induced renal injury in diabetic rats by rosuvastatin. Arch Biol Sci (Beogr). 2021;73(2):265–278. doi: 10.2298/ABS210316021N.
  • Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–1832. doi: 10.1038/s41591-019-0675-0.
  • Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther. 2012;30(1):49–59. doi: 10.1111/j.1755-5922.2010.00218.x.
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. doi: 10.1126/science.7678183.
  • Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2. Diabetes. Diabetes. 2003;52(7):1799–1805. doi: 10.2337/diabetes.52.7.1799.
  • Marques-Vidal P, Schmid R, Bochud M, et al. Adipocytokines, hepatic and inflammatory biomarkers and incidence of type 2 diabetes. The CoLaus study. PLoS One. 2012;7(12):e51768. doi: 10.1371/journal.pone.0051768.
  • Kaptoge S, Di Angelantonio E, Lowe G, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132–140. doi: 10.1016/S0140-6736(09)61717-7.
  • Lakoski SG, Lagace TA, Cohen JC, et al. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab. 2009;94(7):2537–2543. doi: 10.1210/jc.2009-0141.
  • Nekaies Y, Baudin B, Kelbousi S, et al. Plasma proprotein convertase subtilisin/kexin type 9 is associated with Lp(a) in type 2 diabetic patients. J Diabetes Complications. 2015;29(8):1165–1170. doi: 10.1016/j.jdiacomp.2015.08.003.
  • Brouwers MCGJ, Troutt JS, van Greevenbroek MMJ, et al. Plasma proprotein convertase subtilisin kexin type 9 is not altered in subjects with impaired glucose metabolism and type 2 diabetes mellitus, but its relationship with non-HDL cholesterol and apolipoprotein B may be modified by type 2 diabetes mellitus. Atherosclerosis. 2011;217(1):263–267. doi: 10.1016/j.atherosclerosis.2011.03.023.
  • Reddy LL, Shah SV, Ponde CK, et al. Screening of PCSK9 and LDLR genetic variants in familial hypercholesterolemia (FH) patients in India. J Hum Genet. 2021;66(10):983–993. doi: 10.1038/s10038-021-00924-y.
  • Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70–76. doi: 10.1006/abio.1996.0292.
  • Ayub A, Mackness MI, Arrol S, et al. Serum paraoxonase after myocardial infarction. Arterioscler Thromb Vasc Biol. 1999;19(2):330–335. doi: 10.1161/01.atv.19.2.330.
  • Marcocci L, Packer L, Droy-Lefaix M-T, et al. Antioxidant action of ginkgo biloba extract EGb 761. In. 1994;234:462–475.
  • Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310.
  • Nourooz-Zadeh J, Tajaddini-Sarmadi J, McCarthy S, et al. Elevated levels of authentic plasma hydroperoxides in IDDM. Diabetes. 1995;44(9):1054–1058. doi: 10.2337/diab.44.9.1054.
  • Yagi K. Lipid peroxides and human diseases. Chem Phys Lipids. 1987;45(2-4):337–351. doi: 10.1016/0009-3084(87)90071-5.
  • Feingold KR, Moser AH, Shigenaga JK, et al. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun. 2008;374(2):341–344. doi: 10.1016/j.bbrc.2008.07.023.
  • Lan H, Pang L, Smith MM, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects gene expression pathways beyond cholesterol metabolism in liver cells. J Cell Physiol. 2010;224(1):273–281. n/a-n/a. doi: 10.1002/jcp.22130.
  • Ricci C, Ruscica M, Camera M, et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep. 2018;8(1):2267. doi: 10.1038/s41598-018-20425-x.
  • Dalla Vestra M, Mussap M, Gallina P, et al. Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes. J Am Soc Nephrol. 2005;16 Suppl 1: s 78–S82. doi: 10.1681/asn.2004110961.
  • Mansoor G, Tahir M, Maqbool T, et al. Increased expression of circulating stress markers, inflammatory cytokines and decreased antioxidant level in diabetic nephropathy. Medicina. 2022;58(11):1604. doi: 10.3390/medicina58111604.
  • Soleimani A, Soleimani M, Farzadnejad F, et al. The relationship between urinary and plasma levels of tumor necrosis factor alpha and various stages of chronic kidney disease in patients with type II diabetes mellitus. J Nephropathol. 2020;9(4):e39–e39. doi: 10.34172/jnp.2020.39.
  • Dinh W, Füth R, Nickl W, et al. Elevated plasma levels of TNF-alpha and interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders. Cardiovasc Diabetol. 2009;8:58. doi: 10.1186/1475-2840-8-58.
  • Pfützner A, Schöndorf T, Hanefeld M, et al. High-sensitivity C-reactive protein predicts cardiovascular risk in diabetic and nondiabetic patients: effects of insulin-sensitizing treatment with pioglitazone. J Diabetes Sci Technol. 2010;4(3):706–716. doi: 10.1177/193229681000400326.
  • Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: current therapeutics strategies and future perspectives. Free Radic Biol Med. 2022;184:114–134. doi: 10.1016/j.freeradbiomed.2022.03.019.
  • Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111(10):5944–5972. doi: 10.1021/cr200084z.
  • Gunawardena HP, Silva R, Sivakanesan R, et al. Poor glycaemic control is associated with increased lipid peroxidation and glutathione peroxidase activity in type 2 diabetes patients. Oxid Med Cell Longev. 2019;2019:9471697. doi: 10.1155/2019/9471697.
  • Chang J-M, Kuo M-C, Kuo H-T, et al. Increased glomerular and extracellular malondialdehyde levels in patients and rats with diabetic nephropathy. J Lab Clin Med. 2005;146(4):210–215. doi: 10.1016/j.lab.2005.05.007.
  • Martín-Gallán P, Carrascosa A, Gussinyé M, et al. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med. 2003;34(12):1563–1574. doi: 10.1016/s0891-5849(03)00185-0.
  • Tangvarasittichai S, Poonsub P, Tangvarasittichai O, Sirigulsatien V. Serum levels of malondialdehyde in type 2 diabetes mellitus Thai subjects. Siriraj Med J. 2009;61:250–254.
  • Alvi SS, Nabi R, Khan MS, et al. Glycyrrhizic acid scavenges reactive carbonyl species and attenuates glycation-induced multiple protein modification: an in vitro and in silico study. Oxid Med Cell Longev. 2021;2021:7086951. doi: 10.1155/2021/7086951.
  • Miric DJ, Kisic BM, Filipovic-Danic S, et al. Xanthine oxidase activity in type 2 diabetes mellitus patients with and without diabetic peripheral neuropathy. J Diabetes Res. 2016;2016:4370490. doi: 10.1155/2016/4370490.
  • Polito L, Bortolotti M, Battelli MG, et al. Chronic kidney disease: which role for xanthine oxidoreductase activity and products? Pharmacol Res. 2022;184:106407. doi: 10.1016/j.phrs.2022.106407.
  • Klisic A, Kocic G, Kavaric N, et al. Xanthine oxidase and uric acid as independent predictors of albuminuria in patients with diabetes mellitus type 2. Clin Exp Med. 2018;18(2):283–290. doi: 10.1007/s10238-017-0483-0.
  • Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2001;21(4):473–480. doi: 10.1161/01.atv.21.4.473.
  • Murillo González FE, Ponce-RuÍz N, Rojas-GarcÍa AE, et al. PON1 concentration and high-density lipoprotein characteristics as cardiovascular biomarkers. Arch Med Sci Atheroscler Dis. 2019;4(1):47–54. doi: 10.5114/amsad.2019.84447.
  • El-Said NH, Nasr-Allah MM, Sadik NA, et al. Paraoxonase-1 activity in type 2 diabetes mellitus with and without nephropathy. Egypt J Intern Med. 2015;27(2):63–68. doi: 10.4103/1110-7782.159451.
  • Alvi SS, Ansari IA, Ahmad MK, et al. Lycopene amends LPS-induced oxidative stress and hypertriglyceridemia via modulating PCSK-9 expression and Apo-CIII-mediated lipoprotein lipase activity. Biomed Pharmacother. 2017;96:1082–1093. doi: 10.1016/j.biopha.2017.11.116.
  • King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004;122(4):333–338. doi: 10.1007/s00418-004-0678-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.