149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dissection of anti-colon cancer activity of NARI-29: special focus on H2O2 modulated NF-κB and death receptor signaling

, , , , &
Pages 308-324 | Received 06 Feb 2023, Accepted 24 Jul 2023, Published online: 07 Aug 2023

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi: 10.3322/CAAC.21708.
  • Taaffe D, Kim J-S, Luo H, et al. Protective effects of physical activity in colon cancer and underlying mechanisms: a review of epidemiological and biological evidence. Crit Rev Oncol Hematol. 2022;170:103578. doi: 10.1016/j.critrevonc.2022.103578.
  • Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14(10):101174. doi: 10.1016/J.TRANON.2021.101174.
  • Boyle JM, Kuryba A, Cowling TE, et al. Survival outcomes associated with completion of adjuvant oxaliplatin-based chemotherapy for stage III colon cancer: a national population-based study. Int J Cancer. 2022;150(2):335–346. doi: 10.1002/IJC.33806.
  • Hamfjord J, Myklebust TÅ, Larsen IK, et al. Survival trends of right- and left-sided colon cancer across four decades: a Norwegian population-based study, cancer. Cancer Epidemiol Biomarkers Prev. 2022;31(2):342–351. doi: 10.1158/1055-9965.EPI-21-0555/674478/AM/SURVIVAL-TRENDS-OF-RIGHT-AND-LEFT-SIDED-COLON.
  • Fantini MC, Guadagni I. From inflammation to colitis-associated colorectal cancer in inflammatory bowel disease: pathogenesis and impact of current therapies. Dig Liver Dis. 2021;53(5):558–565. doi: 10.1016/J.DLD.2021.01.012.
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990. doi: 10.1016/J.CELLSIG.2012.01.008.
  • Jung KA, Kwak MK. Enhanced 4-hydroxynonenal resistance in keap1 silenced human colon cancer cells. Oxid Med Cell Longev. 2013;2013:423965. doi: 10.1155/2013/423965.
  • Doorn JA, Srivastava SK, Petersen DR. Aldose reductase catalyzes reduction of the lipid peroxidation product 4-Oxonon-2-enal. Chem Res Toxicol. 2003;16(11):1418–1423. doi: 10.1021/tx0300378.
  • Khayami R, Hashemi SR, Kerachian MA. Role of aldo-keto reductase family 1 member B1 (AKR1B1) in the cancer process and its therapeutic potential. J Cell Mol Med. 2020;24(16):8890–8902. doi: 10.1111/jcmm.15581.
  • Banerjee S. Aldo keto reductases AKR1B1 and AKR1B10 in cancer: molecular mechanisms and signaling networks. Adv Exp Med Biol. 2021;1347:65–82. doi: 10.1007/5584_2021_634.
  • Wu X, Li X, Fu Q, et al. AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program. J Exp Med. 2017;214(4):1065–1079. doi: 10.1084/JEM.20160903.
  • Miláčková I, Kapustová K, Mučaji P, et al. Artichoke leaf extract inhibits AKR1B1 and reduces NF-κB activity in human leukemic cells. Phytother Res. 2017;31(3):488–496. doi: 10.1002/ptr.5774.
  • Zhu C. Aldose reductase inhibitors as potential therapeutic drugs of diabetic complications, diabetes mellit. Insights Perspect. 2013. doi: 10.5772/54642.
  • Reddy TN, Ravinder M, Bagul P, et al. Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs). Eur J Med Chem. 2014;71:53–66. doi: 10.1016/J.EJMECH.2013.10.043.
  • Syamprasad NP, Jain S, Rajdev B, et al. AKR1B1 inhibition using NARI-29-an epalrestat analogue-alleviates doxorubicin-induced cardiotoxicity via modulating calcium/CaMKII/MuRF-1 axis. Chem Biol Interact. 2023;381:110566. doi: 10.1016/J.CBI.2023.110566.
  • Syamprasad NP, Rajdev B, Jain S, et al. Pivotal role of AKR1B1 in pathogenesis of colitis associated colorectal carcinogenesis. Int Immunopharmacol. 2023;119:110145. doi: 10.1016/J.INTIMP.2023.110145.
  • Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49(W1):W5–W14. doi: 10.1093/nar/gkab255.
  • Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–W364. doi: 10.1093/NAR/GKZ382.
  • Kumar Jeengar M, Kumar S, Shrivastava S, et al. Niclosamide exerts anti-tumor activity through generation of reactive oxygen species and by suppression of WNT/β-catenin signaling axis in HGC-27, MKN-74 human gastric cancer cells. Asia-Pac J Oncol. 2020;1:18–30. doi: 10.32948/ajo.2020.08.06.
  • Kim SL, Liu YC, Park YR, et al. Parthenolide enhances sensitivity of colorectal cancer cells to TRAIL by inducing death receptor 5 and promotes TRAIL-induced apoptosis. Int J Oncol. 2015;46(3):1121–1130. doi: 10.3892/IJO.2014.2795/HTML.
  • Jannu AK, Puppala ER, Gawali B, et al. Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor. Int J Pharm. 2021;605:120819. doi: 10.1016/J.IJPHARM.2021.120819.
  • Kalyankumarraju M, Puppala ER, Ahmed S, et al. Zanthoxylum alatum roxb. seed extract ameliorates stress aggravated DSS-induced ulcerative colitis in mice: plausible role on NF-κB signaling axis. J Ethnopharmacol. 2021;279:114385. doi: 10.1016/J.JEP.2021.114385.
  • Bertram H, Nerlich A, Omlor G, et al. Expression of TRAIL and the death receptors DR4 and DR5 correlates with progression of degeneration in human intervertebral disks. Mod Pathol. 2009;22(7):895–905. doi: 10.1038/MODPATHOL.2009.39.
  • Tammali R, Saxena A, Srivastava SK, et al. Aldose reductase inhibition prevents hypoxia-induced increase in hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) by regulating 26 S proteasome-mediated protein degradation in human colon cancer cells. J Biol Chem. 2011;286(27):24089–24100. doi: 10.1074/jbc.M111.219733.
  • Hunter TB, Manimala NJ, Luddy KA, et al. Paclitaxel and TRAIL synergize to kill paclitaxel-resistant small cell lung cancer cells through a caspase-independent mechanism mediated through AIF. Anticancer Res. 2011;31:3193.
  • Jain S, Durugkar S, Saha P, et al. Effects of intranasal azithromycin on features of cigarette smoke-induced lung inflammation. Eur J Pharmacol. 2022;915:174467. doi: 10.1016/J.EJPHAR.2021.174467.
  • Ciriolo MR, Palamara AT, Incerpi S, et al. Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection. J Biol Chem. 1997;272(5):2700–2708. doi: 10.1074/jbc.272.5.2700.
  • Dharmaraja AT. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem. 2017;60(8):3221–3240. doi: 10.1021/ACS.JMEDCHEM.6B01243.
  • Farmer EE, Mueller MJ. ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol. 2013;64:429–450. doi: 10.1146/annurev-arplant-050312-120132.
  • Yashiro M. Ulcerative colitis-associated colorectal cancer. World J Gastroenterol. 2014;20(44):16389–16397. doi: 10.3748/wjg.v20.i44.16389.
  • Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 2018;217(7):2291–2298. doi: 10.1083/jcb.201804161.
  • Begue B, Wajant H, Bambou JC, et al. Implication of TNF-related apoptosis-inducing ligand in inflammatory intestinal epithelial lesions. Gastroenterology. 2006;130(7):1962–1974. doi: 10.1053/j.gastro.2006.03.022.
  • Mo S, Xiong H, Shu G, et al. Phaseoloideside E, a novel natural triterpenoid saponin identified from entada phaseoloides, induces apoptosis in Ec-109 esophageal cancer cells through reactive oxygen species generation. J Pharmacol Sci. 2013;122(3):163–175. doi: 10.1254/jphs.12193FP.
  • Chang CT, Hseu YC, Thiyagarajan V, et al. Antrodia salmonea induces G2 cell-cycle arrest in human triple-negative breast cancer (MDA-MB-231) cells and suppresses tumor growth in athymic nude mice. J Ethnopharmacol. 2017;196:9–19. doi: 10.1016/j.jep.2016.12.018.
  • Singh D, Cho WC, Upadhyay G. Drug-induced liver toxicity and prevention by herbal antioxidants: an overview. Front Physiol. 2016;6:363. doi: 10.3389/FPHYS.2015.00363.
  • Fu B, Wang N, Tan HY, et al. Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: a review on experimental and clinical evidences. Front Pharmacol. 2018;9:1394. doi: 10.3389/FPHAR.2018.01394/BIBTEX.
  • Zhu J, Chen L, Shi J, et al. TRAIL receptor deficiency sensitizes mice to dextran sodium sulphate-induced colitis and colitis-associated carcinogenesis. Immunology. 2014;141(2):211–221. doi: 10.1111/IMM.12181.
  • Shankar S, Chen Q, Sarva K, et al. Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. JMS. 2007;2:10. doi: 10.1186/1750-2187-2-10.
  • Chen S, Fu L, Raja SM, et al. Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Mol Cancer. 2010;9(1):23. doi: 10.1186/1476-4598-9-23.
  • Nakamura H, Taguchi A, Kawana K, et al. Therapeutic significance of targeting surviving in cervical cancer and possibility of combination therapy with TRAIL. Oncotarget. 2018;9(17):13451–13461. doi: 10.18632/ONCOTARGET.24413.
  • Syamprasad N, Madje N, Bachannagari J, et al. Niclosamide nanocrystal for enhanced in-vivo efficacy against gastrointestinal stromal tumor via regulating EGFR/STAT-3/DR-4 axis. J Drug Deliv Sci Technol. 2023;81:104221. doi: 10.1016/j.jddst.2023.104221.
  • Park SH, Lee DH, Kim JL, et al. Metformin enhances TRAIL-induced apoptosis by MCL-1 degradation via mule in colorectal cancer cells. Oncotarget. 2016;7(37):59503–59518. doi: 10.18632/ONCOTARGET.11147.
  • Kuwabara M, Asanuma T, Niwa K, et al. Regulation of cell survival and death signals induced by oxidative stress. J Clin Biochem Nutr. 2008;43(2):51–57. doi: 10.3164/JCBN.2008045.
  • Shoeb M, Ramana KV, Srivastava SK. Aldose reductase inhibition enhances TRAIL-induced human colon cancer cell apoptosis through AKT/FOXO3a-dependent upregulation of death receptors. Free Radic Biol Med. 2013;63:280–290. doi: 10.1016/j.freeradbiomed.2013.05.039.
  • Dagher Z, Park YS, Asnaghi V, et al. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes. 2004;53(9):2404–2411. doi: 10.2337/diabetes.53.9.2404.
  • Saxena A, Shoeb M, Ramana KV, et al. Aldose reductase inhibition suppresses colon cancer cell viability by modulating miR-21 mediated PDCD4 expression. Eur J Cancer. 2013;49(15):3311–3319. doi: 10.1016/J.EJCA.2013.05.031.
  • Yadav UCS, Ramana KV. Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid Med Cell Longev. 2013;2013:690545. doi: 10.1155/2013/690545.
  • Wilmes A, Leonard MO, Jennings P. Nrf2 inducibility of aldo-keto reductases. Toxicol Lett. 2013;221(1):39. doi: 10.1016/j.toxlet.2013.05.012.
  • Ramana KV. Aldose reductase: new insights for an old enzyme. Biomol Concepts. 2011;2(1–2):103–114. doi: 10.1515/BMC.2011.002.
  • Shrivastava S, Kulkarni P, Thummuri D, et al. Piperlongumine, an alkaloid causes inhibition of PI3 K/akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis. 2014;19(7):1148–1164. doi: 10.1007/s10495-014-0991-2.
  • H. Zhao, L. Wu, G. Yan, Y. Chen, M. Zhou, Y. Wu, Y. Li, Inflammation and tumor progression: signaling pathways and targeted intervention. Sig Transduct Target Ther. 2021 61 (2021) 1–46. doi: 10.1038/s41392-021-00658-5.
  • Yang B, Hodgkinson A, Oates PJ, et al. High glucose induction of DNA-binding activity of the transcription factor NFκB in patients with diabetic nephropathy. Biochim Biophys Acta. 2008;1782(5):295–302. doi: 10.1016/j.bbadis.2008.01.009.
  • Nakamura H, TaguchI A, Kawana K, et al. STAT3 activity regulates sensitivity to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cervical cancer cells. Int J Oncol. 2016;49(5):2155–2162. doi: 10.3892/IJO.2016.3681/HTML.
  • Abdulghani J, Allen JE, Dicker DT, et al. Sorafenib sensitizes solid tumors to Apo2L/TRAIL and Apo2L/TRAIL receptor agonist antibodies by the Jak2-Stat3-Mcl1 axis. PLoS One. 2013;8(9):e75414. doi: 10.1371/JOURNAL.PONE.0075414.
  • Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7:44735. doi: 10.1038/srep44735.
  • Szliszka E, Zydowicz G, Mizgala E, et al. Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. Int J Oncol. 2012;41(3):818–828. doi: 10.3892/IJO.2012.1527.
  • Yodkeeree S, Sung B, Limtrakul P, et al. Zerumbone enhances TRAIL-induced apoptosis through the induction of death receptors in human colon cancer cells: evidence for an essential role of reactive oxygen species. Cancer Res. 2009;69(16):6581–6589. doi: 10.1158/0008-5472.CAN-09-1161.
  • Do MT, Na MK, Kim HG, et al. Ilimaquinone induces death receptor expression and sensitizes human colon cancer cells to TRAIL-induced apoptosis through activation of ROS-ERK/p38 MAPK-CHOP signaling pathways. Food Chem Toxicol. 2014;71:51–59. doi: 10.1016/J.FCT.2014.06.001.
  • Gupta SC, Reuter S, Phromnoi K, et al. Nimbolide sensitizes human colon cancer cells to TRAIL through reactive oxygen species- and ERK-dependent up-regulation of death receptors, p53, and bax. J Biol Chem. 2011;286(2):1134–1146. doi: 10.1074/JBC.M110.191379.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.