173
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Astaxanthin protects human ARPE-19 retinal pigment epithelium cells from blue light-induced phototoxicity by scavenging singlet oxygen

, , , ORCID Icon, , & ORCID Icon show all
Pages 430-443 | Received 13 Sep 2023, Accepted 19 Oct 2023, Published online: 02 Nov 2023

References

  • Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration. Lancet. 2018;392(10153):1147–1159. doi: 10.1016/S0140-6736(18)31550-2.
  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–e116. doi: 10.1016/S2214-109X(13)70145-1.
  • Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614–618. doi: 10.1136/bjophthalmol-2011-300539.
  • Xu X, Wu J, Yu X, et al. Regional differences in the global burden of age-related macular degeneration. BMC Public Health. 2020;20(1):410. doi: 10.1186/s12889-020-8445-y.
  • van Lookeren Campagne M, LeCouter J, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol. 2014;232(2):151–164. doi: 10.1002/path.4266.
  • Ruan Y, Jiang S, Musayeva A, et al. Oxidative stress and vascular dysfunction in the retina: therapeutic strategies. Antioxidants. 2020;9(8):761. doi: 10.3390/antiox9080761.
  • Crouch RK, Koutalos Y, Kono M, et al. A2E and lipofuscin. Prog Mol Biol Transl Sci. 2015;134:449–463.
  • Kim HJ, Sparrow JR. Bisretinoid phospholipid and vitamin a aldehyde: shining a light. J Lipid Res. 2021;62:100042. doi: 10.1194/jlr.TR120000742.
  • Brunk UT, Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med. 2002;33(5):611–619. doi: 10.1016/s0891-5849(02)00959-0.
  • Boulton M, Dontsov A, Jarvis-Evans J, et al. Lipofuscin is a photoinducible free radical generator. J Photochem Photobiol B. 1993;19(3):201–204. doi: 10.1016/1011-1344(93)87085-2.
  • Wassell J, Davies S, Bardsley W, et al. The photoreactivity of the retinal age pigment lipofuscin. J Biol Chem. 1999;274(34):23828–23832. doi: 10.1074/jbc.274.34.23828.
  • Furso J, Zadlo A, Szewczyk G, et al. Photoreactivity of bis-retinoid A2E complexed with a model protein in selected model systems. Cell Biochem Biophys. 2020;78(4):415–427. doi: 10.1007/s12013-020-00942-1.
  • Singlet BL, Generation O, Retinal BY, et al. Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Free Radic Biol Med. 1998;24:1107–1112.
  • Rózanowska M, Jarvis-Evans J, Korytowski W, et al. Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem. 1995;270(32):18825–18830. doi: 10.1074/jbc.270.32.18825.
  • Algvere PV, Marshall J, Seregard S. Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmol Scand. 2006;84(1):4–15. doi: 10.1111/j.1600-0420.2005.00627.x.
  • Jaadane I, Boulenguez P, Chahory S, et al. Retinal damage induced by commercial light emitting diodes (LEDs). Free Radic Biol Med. 2015;84:373–384. doi: 10.1016/j.freeradbiomed.2015.03.034.
  • Jaadane I, Elisa G, Rodriguez V, et al. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo. J Cell Mol Med. 2017;21(12):3453–3466. doi: 10.1111/jcmm.13255.
  • Taylor HR, Muñoz B, West S, et al. Visible light and risk of age-related macular degeneration. Trans Am Ophthalmol Soc. 1990;88:163–168.
  • Cougnard-Gregoire A, Aslam T, Seddon JM, et al. Blue light exposure : Ocular hazards and prevention – a narrative review. Ophthalmol Ther. 2023;12(2):755–788. doi: 10.1007/s40123-023-00675-3.
  • Tan BL, Norhaizan ME, Liew W-P-P, et al. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol. 2018;9:1162. doi: 10.3389/fphar.2018.01162.
  • Parish CA, Hashimoto M, Nakanishi K, et al. Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci USA. 1998;95(25):14609–14613. doi: 10.1073/pnas.95.25.14609.
  • Kusu H, Yoshida H, Kudo M, et al. Tomatidine reduces palmitate-induced lpid accumulation by activating AMPK via vitamin D receptor-mediated signaling in human HepG2 hepatocytes. Mol Nutr Food Res. 2019;63:1801377.
  • Oshimo M, Nakashima F, Kai K, et al. Sodium sulfite causes gastric mucosal cell death by inducing oxidative stress. Free Radic Res. 2021;55:731–743.
  • Kim S, Tachikawa T, Fujitsuka M, et al. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy. J Am Chem Soc. 2014;136(33):11707–11715. doi: 10.1021/ja504279r.
  • Yagi M, Nakatsuji Y, Maeda A, et al. Phenethyl isothiocyanate activates leptin signaling and decreases food intake. PLoS One. 2018;13(11):e0206748. doi: 10.1371/journal.pone.0206748.
  • Yamanaka K, Saito Y, Sakiyama J, et al. A novel fluorescent probe with high sensitivity and selective detection of lipid hydroperoxides in cells. RSC Adv. 2012;2(20):7894–7900. doi: 10.1039/c2ra20816d.
  • Cheng K-C, Hsu Y-T, Liu W, et al. The role of oxidative stress and autophagy in blue-light-induced damage to the retinal pigment epithelium in zebrafish in vitro and in vivo. Int J Mol Sci. 2021;22(3):1338.
  • Seko Y, Pang J, Tokoro T, et al. Blue light-induced apoptosis in cultured retinal pigment epithelium cells of the rat. Graefes Arch Clin Exp Ophthalmol. 2001;239(1):47–52. doi: 10.1007/s004170000220.
  • Wang L, Yu X, Zhang D, et al. Long-term blue light exposure impairs mitochondrial dynamics in the retina in light-induced retinal degeneration in vivo and in vitro. J Photochem Photobiol B. 2023;240:112654. doi: 10.1016/j.jphotobiol.2023.112654.
  • Shalini S, Dorstyn L, Dawar S, et al. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22(4):526–539. doi: 10.1038/cdd.2014.216.
  • Sparrow JR, Zhou J, Ben-Shabat S, et al. Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci. 2002;43(4):1222–1227.
  • Delmelle M. An investigation of retinal as a source of singlet oxygen. Photochem Photobiol. 1978;27(6):731–734. doi: 10.1111/j.1751-1097.1978.tb07671.x.
  • Delmelle M. Retinal sensitized photodynamic damage to liposomes. Photochem Photobiol. 1978;28(3):357–360. doi: 10.1111/j.1751-1097.1978.tb07718.x.
  • Ravanat JL, Di Mascio P, Martinez GR, et al. Singlet oxygen induces oxidation of cellular DNA. J Biol Chem. 2000;275(51):40601–40604. doi: 10.1074/jbc.M006681200.
  • Terao J, Matsushita S. Products formed by photosensitized oxidation of unsaturated fatty acid esters. J Americ Oil Chem Soc. 1977;54(6):234–238. doi: 10.1007/BF02655162.
  • Ahmed M, Pickova J, Ahmad T, et al. Oxidation of lipids in foods. Sarhad J Agric. 2016;32(3):230–238. doi: 10.17582/journal.sja/2016.32.3.230.238.
  • Junghans A, Sies H, Stahl W. Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Arch Biochem Biophys. 2001;391(2):160–164. doi: 10.1006/abbi.2001.2411.
  • Obana A, Gohto Y, Nakazawa R, et al. Effect of an antioxidant supplement containing high dose lutein and zeaxanthin on macular pigment and skin carotenoid levels. Sci Rep. 2020;10(1):10262. doi: 10.1038/s41598-020-66962-2.
  • Lu L, Hu T, Xu Z. Structural characterization of astaxanthin aggregates as revealed by analysis and simulation of optical spectra. Spectrochim Acta A Mol Biomol Spectrosc. 2017;185:85–92. doi: 10.1016/j.saa.2017.05.031.
  • Cho Y-K, Park D-H, Jeon I-C. Medication trends for age-related macular degeneration. Int J Mol Sci. 2021;22(21):11837.
  • Pawlowska E, Szczepanska J, Koskela A, et al. Dietary polyphenols in age-related macular degeneration: protection against oxidative stress and beyond. Oxid Med Cell Longev. 2019;2019:9682318–9682313. doi: 10.1155/2019/9682318.
  • Radzin S, Wiśniewska-Becker A, Markiewicz M, et al. Structural impact of selected retinoids on model photoreceptor membranes. Membranes. 2023;13(6):575. doi: 10.3390/membranes13060575.
  • Maeda T, Golczak M, Maeda A. Retinal photodamage mediated by all-trans-retinal. Photochem Photobiol. 2012;88(6):1309–1319. doi: 10.1111/j.1751-1097.2012.01143.x.
  • Boulton M, Rózanowska M, Rózanowski B. Retinal photodamage. J Photochem Photobiol B. 2001;64(2–3):144–161. doi: 10.1016/s1011-1344(01)00227-5.
  • Masutomi K, Chen C, Nakatani K, et al. All-trans retinal mediates light-induced oxidation in single living rod photoreceptors. Photochem Photobiol. 2012;88(6):1356–1361. doi: 10.1111/j.1751-1097.2012.01129.x.
  • Nishida Y, Yamashita E, Miki W. Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system. Carotenoid Sci. 2007;11:16–20.
  • Yang M, Wang Y. Recent advances and the mechanism of astaxanthin in ophthalmological diseases. J Ophthalmol. 2022;2022:8071406–8071411. doi: 10.1155/2022/8071406.
  • Goto S, Kogure K, Abe K, et al. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim Biophys Acta. 2001;1512(2):251–258. doi: 10.1016/s0005-2736(01)00326-1.
  • Ambati RR, Phang SM, Ravi S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications – a review. Mar Drugs. 2014;12(1):128–152. doi: 10.3390/md12010128.
  • Nakajima Y, Inokuchi Y, Shimazawa M, et al. Astaxanthin, a dietary carotenoid, protects retinal cells against oxidative stress in-vitro and in mice in-vivo. J Pharm Pharmacol. 2008;60(10):1365–1374. doi: 10.1211/jpp/60.10.0013.
  • Osterlie MB, Østerlie M, Bjerkeng B. Plasma appearance and distribution of astaxanthin E/Z and R/S isomers in plasma lipoproteins of men after single dose administration of astaxanthin. J Nutr Biochem. 2000;11(10):482–490. doi: 10.1016/s0955-2863(00)00104-2.
  • Mercke Odeberg J, Lignell A, Pettersson A, et al. Oral bioavailability of the antioxidant astaxanthin in humans is enhanced by incorporation of lipid based formulations. Eur J Pharm Sci. 2003;19(4):299–304. doi: 10.1016/s0928-0987(03)00135-0.
  • Meor Mohd Affandi MMR, Julianto T, Majeed ABA. Enhanced oral bioavailability of astaxanthin with droplet size reduction. Food Sci Technol Res. 2012;18(4):549–554. doi: 10.3136/fstr.18.549.
  • Niu T, Zhou J, Wang F, et al. Safety assessment of astaxanthin from haematococcus pluvialis: acute toxicity, genotoxicity, distribution and repeat-dose toxicity studies in gestation mice. Regul Toxicol Pharmacol. 2020;115:104695. doi: 10.1016/j.yrtph.2020.104695.
  • Turck D, Castenmiller J, de Henauw S, et al. Safety of astaxanthin for its use as a novel food in food supplements. Efsa J. 2020;18(2):e05993. doi: 10.2903/j.efsa.2020.5993.
  • Stewart JS, Lignell A, Pettersson A, et al. Safety assessment of astaxanthin-rich microalgae biomass: acute and subchronic toxicity studies in rats. Food Chem Toxicol. 2008;46(9):3030–3036. doi: 10.1016/j.fct.2008.05.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.