121
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of the nature of the chelated metal on the photodynamic activity of metalloporphyrins

, , , , , , & show all
Pages 487-499 | Received 16 May 2023, Accepted 04 Oct 2023, Published online: 11 Dec 2023

References

  • Benov L. Photodynamic therapy: current status and future directions. Med Princ Pract. 2015;24 Suppl 1(Suppl 1):14–28. doi: 10.1159/000362416.
  • Hamblin MR. Photodynamic therapy for cancer: what’s past is prologue. Photochem Photobiol. 2020;96(3):506–516. doi:10.1111/php.13190.
  • Benov L, Batinic-Haberle I, Spasojevic I, et al. Isomeric N-alkylpyridylporphyrins and their Zn(II) complexes: inactive as SOD mimics but powerful photosensitizers. Arch Biochem Biophys. 2002;402(2):159–165. doi:10.1016/S0003-9861(02)00062-0.
  • Pavani C, Uchoa AF, Oliveira CS, et al. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers. Photochem Photobiol Sci. 2009;8(2):233–240. doi:10.1039/b810313e.
  • Sarbadhikary P, George BP, Abrahamse H. Potential application of photosensitizers with high-Z elements for synergic cancer therapy. Front Pharmacol. 2022;13:921729. doi:10.3389/fphar.2022.921729.
  • Josefsen LB, Boyle RW. Photodynamic therapy and the development of metal-based photosensitisers. Met Based Drugs. 2008;2008:276109–276123. doi:10.1155/2008/276109.
  • Yoon I, Park HS, Cui BC, et al. Photodynamic and antioxidant activities of divalent transition metal complexes of methyl pheophorbide-A. Bull Kor Chem Soc. 2011;32(spc8):2981–2987. doi:10.5012/bkcs.2011.32.8.2981.
  • Shi L, Jiang YY, Jiang T, et al. Water-soluble manganese and iron mesotetrakis(carboxyl)porphyrin: DNA binding, oxidative cleavage, and cytotoxic activities. Molecules. 2017;22(7):1084. doi:10.3390/molecules22071084.
  • Sarbadhikary P, Dube A, Gupta PK. Synthesis and characterization of photodynamic activity of an iodinated chlorin: p 6 copper complex. RSC Adv. 2016;6(79):75782–75792. doi:10.1039/C6RA14026B.
  • Antoni PM, Naik A, Albert I, et al. (Metallo)porphyrins as potent phototoxic anti-cancer agents after irradiation with red light. Chemistry. 2015;21(3):1179–1183. doi:10.1002/chem.201405470.
  • Moghnie S, Tovmasyan A, Craik J, et al. Cationic amphiphilic Zn-porphyrin with high antifungal photodynamic potency. Photochem Photobiol Sci. 2017;16(11):1709–1716. doi:10.1039/c7pp00143f.
  • Odeh AM, Craik JD, Ezzeddine R, et al. Targeting mitochondria by Zn(II)NAlkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy. PLoS One. 2014;9(9):e108238. doi:10.1371/journal.pone.0108238.
  • Al-Mutairi DA, Craik JD, Batinic-Haberle I, et al. Photosensitizing action of isomeric zinc N-methylpyridyl porphyrins in human carcinoma cells. Free Radic Res. 2006;40(5):477–483. doi:10.1080/10715760600577849.
  • Alenezi K, Tovmasyan A, Batinic-Haberle I, et al. Optimizing Zn porphyrin-based photosensitizers for efficient antibacterial photodynamic therapy. Photodiagnosis Photodyn Ther. 2017;17:154–159. doi:10.1016/j.pdpdt.2016.11.009.
  • Kee HL, Bhaumik J, Diers JR, et al. Photophysical characterization of imidazolium-substituted Pd(II), in(III), and Zn(II) porphyrins as photosensitizers for photodynamic therapy. J Photochem Photobiol A Chem. 2008;200(2–3):346–355. doi:10.1016/j.jphotochem.2008.08.006.
  • Khisa J, Derese S, Mack J, et al. Synthesis, photophysical properties and photodynamic antimicrobial activity of meso 5,10,15,20-tetra(pyren-1-yl)porphyrin and its indium(III) complex. J Porphyrins Phthalocyanines. 2021;25(09):794–799. doi:10.1142/S1088424621500462.
  • Makola LC, Managa M, Nyokong T. Enhancement of photodynamic antimicrobialtherapy through the use of cationic indium porphyrin conjugated to Ag/CuFe2O4 nanoparticles. Photodiagn Photodyn Ther. 2020;30:101736. doi:10.1016/j.pdpdt.2020.101736.
  • Openda YI, Nyokong T. Combination of photodynamic antimicrobial chemotherapy and ciprofloxacin to combat S. aureus and E. coli resistant biofilms. Photodiagn Photodyn Ther. 2023;42:103142. doi:10.1016/j.pdpdt.2022.103142.
  • Tovmasyan A, Carballal S, Ghazaryan R, et al. Rational design of superoxide dismutase (sod) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem. 2014;53(21):11467–11483. doi:10.1021/ic501329p.
  • Tovmasyan A, Sampaio RS, Boss MK, et al. Anticancer therapeutic potential of Mn porphyrin/ascorbate system. Free Radic Biol Med. 2015;89:1231–1247. doi:10.1016/j.freeradbiomed.2015.10.416.
  • Tovmasyan A, Weitner T, Spasojevic I, et al. Fe porphyrins revisited: synthesis, characterization and the effects of ortho and meta Fe(III) N-alkylpyridylporphyrins upon the growth of E. coli in the presence and absence of ascorbate. Free Radic Biol Med. 2011;51(Suppl):S99. doi:10.1016/j.freeradbiomed.2011.10.475.
  • Tovmasyan A, Weitner T, Sheng HX, et al. Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology. Inorg Chem. 2013;52(10):5677–5691. doi:10.1021/Ic3012519.
  • Tovmasyan A, Weitner T, Roberts E, et al. Understanding differences in mechanisms of action of Fe vs Mn porphyrins: comparison of their reactivities towards cellular reductants and reactive species. Free Radic Biol Med. 2012;53(Suppl. 2):S120. doi:10.1016/j.freeradbiomed.2012.10.297.
  • Tovmasyan A, Batinic-Haberle I, Benov L. Antibacterial activity of synthetic cationic iron porphyrins. Antioxidants (Basel). 2020;9(10):972. doi:10.3390/antiox9100972.
  • Gyulkhandanyan G, V, Paronyan, MH, Hovsepyan, et al. Photodynamic inactivation of gram (–) and gram (+) microorganisms by cationic porphyrins and metalloporphyrins. Proc. SPIE. 2009;7380:73803I. doi:10.1117/12.823002.
  • Guterres KB, Rossi GG, de Campos MMA, et al. Nanomolar effective report of tetra-cationic silver(II) porphyrins against non-tuberculous mycobacteria in antimicrobial photodynamic approaches. Photodiagn Photodyn Ther. 2022;38:102770. doi:10.1016/j.pdpdt.2022.102770.
  • Tovmasyan AG, Babayan NS, Sahakyan LA, et al. Synthesis and in vitro anticancer activity of water-soluble cationic pyridylporphyrins and their metallocomplexes. J Porphyrins Phthalocyanines. 2008;12(10):1100–1110. doi:10.1142/S1088424608000467.
  • Wang J, Zhang X, Liu Y, et al. Enhanced singlet oxygen production over a photocatalytic stable metal organic framework composed of porphyrin and Ag. J Colloid Interface Sci. 2021;602:300–306. doi:10.1016/j.jcis.2021.05.087.
  • Batinić-Haberle I, Rebouças JS, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal. 2010;13(6):877–918. doi:10.1089/ars.2009.2876.
  • Batinic-Haberle I, Spasojevic I. Complex chemistry and biology of redox-active compounds, commonly known as SOD mimics, affect their therapeutic effects. Antioxid Redox Signal. 2014;20(15):2323–2325. doi:10.1089/ars.2014.5921.
  • Ezzeddine R, Al-Banaw A, Tovmasyan A, et al. Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins. J Biol Chem. 2013;288(51):36579–36588. doi:10.1074/jbc.M113.511642.
  • Schmitt F, Govindaswamy P, Zava O, et al. Combined arene ruthenium porphyrins as chemotherapeutics and photosensitizers for cancer therapy. J Biol Inorg Chem. 2009;14(1):101–109. doi:10.1007/s00775-008-0427-y.
  • Villanueva A, Caggiari L, Jori G, et al. Morphological aspects of an experimental tumour photosensitized with a meso-substituted cationic porphyrin. J Photochem Photobiol B. 1994;23(1):49–56. doi:10.1016/1011-1344(93)06982-9.
  • Malik Z, Ladan H, Nitzan Y. Photodynamic inactivation of gram-negative bacteria: problems and possible solutions. J Photochem Photobiol B. 1992;14(3):262–266. doi:10.1016/1011-1344(92)85104-3.
  • Kalyanasundaram K. Photochemistry of water-soluble porphyrins: comparative study of isomeric tetrapyridyl-and tetrakis(N-Methylpyridiniumyl)porphyrins. Inorg Chem. 1984;23(16):2453–2459. doi:10.1021/ic00184a019.
  • Vergeldt FJ, Koehorst RBM, Van Hoek A, et al. Intramolecular interactions in the ground and excited state of tetrakis(N-methylpyridyl)porphyrins. J Phys Chem. 1995;99(13):4397–4405. doi:10.1021/j100013a007.
  • Tovmasyan A, Babayan N, Poghosyan D, et al. Novel amphiphilic cationic porphyrin and its Ag(II) complex as potential anticancer agents. J Inorg Biochem. 2014;140:94–103. doi:10.1016/j.jinorgbio.2014.06.013.
  • Mifune M, Asahara H, Hinokiyama T, et al. Photoreaction generating active oxygens of In3+-tetrakis(4-methylpyridyl)-porphine in the presence of albumins. Chem Pharm Bull (Tokyo). 2002;50(12):1638–1640. doi:10.1248/cpb.50.1638.
  • Abou-Gamra ZM, Guindy NM. Photochemistry of metalloporphyrins in aqueous solutions. Spectrochim. Acta A Mol. Biomol. 1989;45(12):1207–1210. doi:10.1016/0584-8539(89)80232-6.
  • Chitrapriya N, Park J, Wang W, et al. Photo-induced DNA scission by Cu(ii)-meso-tetrakis(n-N-methylpyridiniumyl)porphyrins (n = 2, 3, 4) and their binding modes to supercoiled DNA. Metallomics. 2012;4(5):417–421. doi:10.1039/c2mt20015e.
  • Thomas M, Craik JD, Tovmasyan A, et al. Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity. Future Microbiol. 2015;10(5):709–724. doi:10.2217/Fmb.14.148.
  • Benov L, Craik J, Batinic-Haberle I. The potential of Zn(II) N-alkylpyridylporphyrins for anticancer therapy. Anticancer Agents Med Chem. 2011;11(2):233–241. doi:10.2174/187152011795255975.
  • Charara M, Tovmasyan A, Batinic-Haberle I, et al. Post-illumination cellular effects of photodynamic treatment. PLoS One. 2017;12(12):e0188535. doi:10.1371/journal.pone.0188535.
  • Schaberle FA. Assessment of the actual light dose in photodynamic therapy. Photodiagn Photodyn Ther. 2018;23:75–77. doi:10.1016/j.pdpdt.2018.06.009.
  • Entradas T, Waldron S, Volk M. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J Photochem Photobiol B. 2020;204:111787. doi:10.1016/j.jphotobiol.2020.111787.
  • Bresolí-Obach R, Torra J, Zanocco RP, et al. Singlet oxygen quantum yield determination using chemical acceptors. Methods Mol Biol. 2021;2202:165–188. doi:10.1007/978-1-0716-0896-8_14.
  • Al Saleh S, Al Mulla F, Luqmani, YA Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS One. 2011;6(6):e20610. doi:10.1371/journal.pone.0020610.
  • Neutsch L, Kroll P, Brunner M, et al. Media photo-degradation in pharmaceutical biotechnology: impact of ambient light on media quality, cell physiology, and IgG production in CHO cultures. J Chem Technol Biotechnol. 2018;93(8):2141–2151. doi:10.1002/jctb.5643.
  • Wang RJ, Nixon BT. Identification of hydrogen peroxide as a photoproduct toxic to human cells in tissue-culture medium irradiated with “daylight” fluorescent light. In Vitro. 1978;14(8):715–722. doi:10.1007/BF02616168.
  • Stockley JH, Evans K, Matthey M, et al. Surpassing light-induced cell damage in vitro with novel cell culture media. Sci Rep. 2017;7(1):849. doi:10.1038/s41598-017-00829-x.
  • Benov L. Improved formazan dissolution for bacterial MTT assay. Microbiol Spectr. 2021;9(3):e01637–01621. doi:10.1128/spectrum.01637-21.
  • Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107–1112. doi:10.1093/jnci/82.13.1107.
  • Weijer R, Clavier S, Zaal EA, et al. Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy. Cell Mol Life Sci. 2017;74(6):1133–1151. doi:10.1007/s00018-016-2401-0.
  • Munshi A, Hobbs M, Meyn RE. Clonogenic cell survival assay. Methods Mol Med. 2005;110:21–28. doi:10.1385/1-59259-869-2:021.
  • Ando T, Irie K, Koshimizu K, et al. Photocytotoxicity of water-soluble metalloporphyrin derivatives. Photochem Photobiol. 1993;57(4):629–633. doi:10.1111/j.1751-1097.1993.tb02928.x.
  • Kunkely H, Vogler A. Photodemetalation of silver(II) tetraphenylporphyrin. Inorg Chem Commun. 2007;10(4):479–481. doi:10.1016/j.inoche.2007.01.007.
  • Bodaness RS, Chan PC. Singlet oxygen as a mediator in the hematoporphyrin catalyzed photooxidation of NADPH to NADP+ in deuterium oxide. J Biol Chem. 1977;252(23):8554–8560.
  • Vekshin NL, Mironov GP. Oxidation of NADH by singlet oxygen generated with the participation of the triplet states of flavin. Biophysics. 1981;26:974–981.
  • Bielski B, Cabelli HJ, Arudi DE, et al. Reactivity of HO2/O2− radicals in aqueous solution. J Phys Chem Ref Data. 1985;14(4):1041–1100. doi:10.1063/1.555739.
  • Ouyang D, Inoue S, Okazaki S, et al. Tetrakis(N-methyl-p-pyridinio)porphyrin and its zinc complex can photosensitize damage of human serum albumin through electron transfer and singlet oxygen generation. J Porphyrins Phthalocyanines. 2016;20(07):813–821. doi:10.1142/S1088424616500991.
  • DeRosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coord Chem Rev. 2002;233–234:351–371. [Database] doi:10.1016/S0010-8545(02)00034-6.
  • Santamarina SC, Heredia DA, Durantini AM, et al. Antimicrobial photosensitizing material based on conjugated Zn(II) porphyrins. Antibiotics (Basel). 2022;11(1):91. doi:10.3390/antibiotics11010091.
  • Bacellar IOL, Tsubone TM, Pavani C, et al. Photodynamic efficiency: from molecular photochemistry to cell death. Int J Mol Sci. 2015;16(9):20523–20559. doi:10.3390/ijms160920523.
  • Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Ann Rev. 2005;11:127–152.
  • Batinic-Haberle I, Spasojevic I, Hambright P, et al. Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in vivo and in vitro superoxide dismutating activities of manganese(III) and iron(III) water-soluble porphyrins. Inorg Chem. 1999;38(18):4011–4022. doi:10.1021/ic990118k.
  • Donohoe C, Senge MO, Arnaut LG, et al. Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity. Biochim Biophys Acta Rev Cancer. 2019;1872(2):188308. doi:10.1016/j.bbcan.2019.07.003.
  • Miki Y, Akimoto J, Hiranuma M, et al. Effect of talaporfin sodium-mediated photodynamic therapy on cell death modalities in human glioblastoma T98G cells. J Toxicol Sci. 2014;39(6):821–827. doi:10.2131/jts.39.821.
  • Mroz P, Yaroslavsky A, Kharkwal GB, et al. Cell death pathways in photodynamic therapy of cancer. Cancers (Basel). 2011;3(2):2516–2539. doi:10.3390/cancers3022516.
  • Kessel D, Woodburn K, Henderson BW, et al. Sites of photodamage in vivo and in vitro by a cationic porphyrin. Photochem Photobiol. 1995;62(5):875–881. doi:10.1111/j.1751-1097.1995.tb09150.x.
  • Batinic-Haberle I, Tovmasyan A, Huang Z, et al. H2O2-driven anticancer activity of Mn porphyrins and the underlying molecular pathways. Oxid Med Cell Longev. 2021;2021:6653723–6653790. doi:10.1155/2021/6653790.
  • Benov L, Craik J, Batinic-Haberle I. Protein damage by photo-activated Zn(II) N-alkylpyridylporphyrins. Amino Acids. 2012;42(1):117–128. doi:10.1007/s00726-010-0640-1.
  • Batinić-Haberle I, Tovmasyan A, Spasojević I. Mn porphyrin-based redox-active therapeutics. In: Batinić-Haberle I, Rebouças JS, Spasojević I, editors. Redox-active therapeutics. Berlin: Springer International Publishing: 2016. p. 165–212.
  • Pereira GFM, Tasso TT. From cuvette to cells: how the central metal ion modulates the properties of phthalocyanines and porphyrazines as photosensitizers. Inorg Chim Acta. 2021;519:120271. doi:10.1016/j.ica.2021.120271.
  • Oliveira CS, Turchiello R, Kowaltowski AJ, et al. Major determinants of photoinduced cell death: subcellular localization versus photosensitization efficiency. Free Radic Biol Med. 2011;51(4):824–833. doi:10.1016/j.freeradbiomed.2011.05.023.
  • Pavani C, Iamamoto Y, Baptista MS. Mechanism and efficiency of cell death of type II photosensitizers: effect of zinc chelation. Photochem Photobiol. 2012;88(4):774–781. doi:10.1111/j.1751-1097.2012.01102.x.
  • Silva EFF, Serpa C, Dabrowski JM, et al. Mechanisms of singlet-oxygen and superoxide-ion generation by porphyrins and bacteriochlorins and their implications in photodynamic therapy. Chemistry. 2010;16(30):9273–9286. doi:10.1002/chem.201000111.
  • Aveline BM, Redmond RW. Can cellular phototoxicity be accurately predicted on the basis of sensitizer photophysics? Photochem Photobiol. 1999;69(3):306–316. doi:10.1562/0031-8655(1999)069<0306.
  • Jensen TJ, Vicente MGH, Luguya R, et al. Effect of overall charge and charge distribution on cellular uptake, distribution and phototoxicity of cationic porphyrins in HEp2 cells. J Photochem Photobiol B. 2010;100(2):100–111. doi:10.1016/j.jphotobiol.2010.05.007.
  • Boyle RW, Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol. 1996;64(3):469–485. doi:10.1111/j.1751-1097.1996.tb03093.x.
  • Kos I, Rebouças JS, DeFreitas-Silva G, et al. Lipophilicity of potent porphyrin-based antioxidants: comparison of ortho and meta isomers of Mn(III) N-alkylpyridylporphyrins. Free Radic Biol Med. 2009;47(1):72–78. doi:10.1016/j.freeradbiomed.2009.04.002.
  • Kos I, Benov L, Spasojević I, et al. High lipophilicity of meta Mn(III) N-alkylpyridylporphyrin-based superoxide dismutase mimics compensates for their lower antioxidant potency and makes them as effective as ortho analogues in protecting superoxide dismutase-deficient Escherichia coli. J Med Chem. 2009;52(23):7868–7872. doi:10.1021/jm900576g.
  • Kessel D, Luo Y. Photodynamic therapy: a mitochondrial inducer of apoptosis. Cell Death Differ. 1999;6(1):28–35. doi:10.1038/sj.cdd.4400446.
  • Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two – cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther. 2005;2(1):1–23. doi:10.1016/S1572-1000(05)00030-X.
  • Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999;6(11):1028–1042. doi:10.1038/sj.cdd.4400598.
  • Hampton MB, Stamenkovic I, Winterbourn CC. Interaction with substrate sensitises caspase-3 to inactivation by hydrogen peroxide. FEBS Lett. 2002;517(1–3):229–232. doi:10.1016/S0014-5793(02)02629-7.
  • Borutaite V, Brown GC. Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett. 2001;500(3):114–118. doi:10.1016/S0014-5793(01)02593-5.
  • Fadeel B, Åhlin A, Henter JI, et al. Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species. Blood. 1998;92(12):4808–4818. doi:10.1182/blood.v92.12.4808.424k01_4808_4818.
  • Hampton MB, Morgan PE, Davies MJ. Inactivation of cellular caspases by peptide-derived tryptophan and tyrosine peroxides. FEBS Lett. 2002;527(1–3):289–292. doi:10.1016/S0014-5793(02)03240-4.
  • Selman SH, Hampton JA, Morgan AR, et al. Copper benzochlorin, a novel photosensitizer for photodynamic therapy: effects on a transplantable urothelial tumor. Photochem Photobiol. 1993;57(4):681–685. doi:10.1111/j.1751-1097.1993.tb02937.x.
  • Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B. 1997;39(1):1–18. doi:10.1016/S1011-1344(96)07428-3.
  • Fujimori K, Nakajima H. Steady-state kinetics of autoxidation of NAD(P)H initiated by hydroperoxyl radical, the acid form of superoxide anion radical. Biochem Biophys Res Commun. 1991;176(2):846–851. doi:10.1016/S0006-291X(05)80263-3.
  • Nadezhdin A, Dunford HB. Oxidation of nicotinamide adenine dinucleotide by hydroperoxyl radical. A flash photolysis study. J Phys Chem. 1979;83(15):1957–1961. doi:10.1021/j100478a007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.