126
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A novel AluYb8 insertion-associated non-coding RNA, lncMUTYH, impairs mitochondrial function and dampens the M2-like polarization of macrophages

, , , , , , , & ORCID Icon show all
Pages 27-42 | Received 18 Aug 2023, Accepted 06 Dec 2023, Published online: 01 Jan 2024

References

  • Nakabeppu Y, Sakumi K, Sakamoto K, et al. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids. Biol Chem. 2006;387(4):373–379. doi: 10.1515/bc.2006.050.
  • David SS, O’Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature. 2007;447(7147):941–950. doi: 10.1038/nature05978.
  • Shinmura K, Yamaguchi S, Saitoh T, et al. Adenine excisional repair function of MYH protein on the adenine:8-hydroxyguanine base pair in double-stranded DNA. Nucleic Acids Res. 2000;28(24):4912–4918. doi: 10.1093/nar/28.24.4912.
  • Out AA, Tops CM, Nielsen M, et al. Leiden open variation database of the MUTYH gene. Hum Mutat. 2010;31(11):1205–1215. doi: 10.1002/humu.21343.
  • Takao M, Zhang QM, Yonei S, et al. Differential subcellular localization of human MutY homolog (hMYH) and the functional activity of adenine:8-oxoguanine DNA glycosylase. Nucleic Acids Res. 1999;27(18):3638–3644. doi: 10.1093/nar/27.18.3638.
  • Sun C, Chen H, Guo W, et al. A common mutation of the MYH gene is associated with increased DNA oxidation and age-related diseases. Free Radic Biol Med. 2010;48(3):430–436. doi: 10.1016/j.freeradbiomed.2009.11.015.
  • Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062.
  • Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002;3(5):370–379. doi: 10.1038/nrg798.
  • Chen H, Sun C, Guo W, et al. AluYb8 insertion in the MUTYH gene is related to increased 8-OHdG in genomic DNA and could be a risk factor for type 2 diabetes in a chinese population. Mol Cell Endocrinol. 2011;332(1–2):301–305. doi: 10.1016/j.mce.2010.11.021.
  • Zhou W, Sun J, Guo W, et al. AluYb8 insertion polymorphism in the MUTYH gene impairs mitochondrial DNA maintenance and affects the age of onset of IPF. Aging. 2019;11(3):933–949. doi: 10.18632/aging.101793.
  • Zhu M, Chen X, Zhang H, et al. AluYb8 insertion in the MUTYH gene and risk of early-onset breast and gastric cancers in the chinese population. Asian Pac J Cancer Prev. 2011;12:1451–1455.
  • Guo W, Zheng B, Cai Z, et al. The polymorphic AluYb8 insertion in the MUTYH gene is associated with reduced type 1 protein expression and reduced mitochondrial DNA content. PLoS One. 2013;8(8):e70718. doi: 10.1371/journal.pone.0070718.
  • Hormozdiari F, Alkan C, Ventura M, et al. Alu repeat discovery and characterization within human genomes. Genome Res. 2011;21(6):840–849. doi: 10.1101/gr.115956.110.
  • Hu S, Wang X, Shan G. Insertion of an alu element in a lncRNA leads to primate-specific modulation of alternative splicing. Nat Struct Mol Biol. 2016;23(11):1011–1019. doi: 10.1038/nsmb.3302.
  • Wang L, Park HJ, Dasari S, et al. CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41(6):e74–e74. doi: 10.1093/nar/gkt006.
  • Tata JR, Hamilton MJ, Shields D. Effects of alpha-amanitin in vivo on RNA polymerase and nuclear RNA synthesis. Nat New Biol. 1972;238(84):161–164. doi: 10.1038/newbio238161a0.
  • Leppek K, Das R, Barna M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19(3):158–174. doi: 10.1038/nrm.2017.103.
  • Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425(19):3723–3730. doi: 10.1016/j.jmb.2012.11.024.
  • Varughese JT, Buchanan SK, Pitt AS. The role of voltage-dependent anion channel in mitochondrial dysfunction and human disease. Cells. 2021;10(7):1737. doi: 10.3390/cells10071737.
  • Guo W, Zheng B, Guo D, et al. Association of AluYb8 insertion/deletion polymorphism in the MUTYH gene with mtDNA maintain in the type 2 diabetes mellitus patients. Mol Cell Endocrinol. 2015;409:33–40. doi: 10.1016/j.mce.2015.03.019.
  • Russell DG, Huang L, VanderVen BC. Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol. 2019;19(5):291–304. doi: 10.1038/s41577-019-0124-9.
  • Xue J, Schmidt SV, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–288. doi: 10.1016/j.immuni.2014.01.006.
  • Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17(3):684–696. doi: 10.1016/j.celrep.2016.09.008.
  • Versteeg R, van Schaik BD, van Batenburg MF, et al. The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res. 2003;13(9):1998–2004. doi: 10.1101/gr.1649303.
  • Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab. 1999;67(3):183–193. doi: 10.1006/mgme.1999.2864.
  • Kreahling J, Graveley BR. The origins and implications of aluternative splicing. Trends Genet. 2004;20(1):1–4. doi: 10.1016/j.tig.2003.11.001.
  • Häsler J, Strub K. Alu elements as regulators of gene expression. Nucleic Acids Res. 2006;34(19):5491–5497. doi: 10.1093/nar/gkl706.
  • Liu W, Li W, Cai X, et al. Identification of a functional human-unique 351-bp alu insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci. Neuropsychopharmacology. 2020;45(7):1196–1206. doi: 10.1038/s41386-020-0659-2.
  • Pérez-Molina R, Arzate-Mejía RG, Ayala-Ortega E, et al. An intronic alu element attenuates the transcription of a long non-coding RNA in human cell lines. Front Genet. 2020;11:928. doi: 10.3389/fgene.2020.00928.
  • Su M, Han D, Boyd-Kirkup J, et al. Evolution of alu elements toward enhancers. Cell Rep. 2014;7(2):376–385. doi: 10.1016/j.celrep.2014.03.011.
  • Chen C, Ara T, Gautheret D. Using alu elements as polyadenylation sites: a case of retroposon exaptation. Mol Biol Evol. 2009;26(2):327–334. doi: 10.1093/molbev/msn249.
  • Tajnik M, Vigilante A, Braun S, et al. Intergenic alu exonisation facilitates the evolution of tissue-specific transcript ends. Nucleic Acids Res. 2015;43(21):10492–10505. doi: 10.1093/nar/gkv956.
  • Lubelsky Y, Ulitsky I. Sequences enriched in alu repeats drive nuclear localization of long RNAs in human cells. Nature. 2018;555(7694):107–111. doi: 10.1038/nature25757.
  • Yin Y, Lu JY, Zhang X, et al. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature. 2020;580(7801):147–150. doi: 10.1038/s41586-020-2105-3.
  • Carrieri C, Cimatti L, Biagioli M, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012;491(7424):454–457. doi: 10.1038/nature11508.
  • Zhao L, Jiang L, Zhang M, et al. NF-kappaB-activated SPRY4-IT1 promotes cancer cell metastasis by downregulating TCEB1 mRNA via Staufen1-mediated mRNA decay. Oncogene. 2021;40(30):4919–4929. doi: 10.1038/s41388-021-01900-8.
  • López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243–278. doi: 10.1016/j.cell.2022.11.001.
  • Hu MY, Lin YY, Zhang BJ, et al. Update of inflammasome activation in microglia/macrophage in aging and aging-related disease. CNS Neurosci Ther. 2019;25(12):1299–1307. doi: 10.1111/cns.13262.
  • Chen S, Saeed A, Liu Q, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8(1):207. doi: 10.1038/s41392-023-01452-1.
  • Almatroodi SA, McDonald CF, Darby IA, et al. Characterization of M1/M2 Tumour-Associated macrophages (TAMs) and Th1/Th2 cytokine profiles in patients with NSCLC. Cancer Microenviron. 2016;9(1):1–11. doi: 10.1007/s12307-015-0174-x.
  • Wang Y, Li N, Zhang X, et al. Mitochondrial metabolism regulates macrophage biology. J Biol Chem. 2021;297(1):100904. doi: 10.1016/j.jbc.2021.100904.
  • Seegren PV, Harper LR, Downs TK, et al. Reduced mitochondrial calcium uptake in macrophages is a major driver of inflammaging. Nat Aging. 2023;3(7):796–812. doi: 10.1038/s43587-023-00436-8.
  • Oka S, Leon J, Tsuchimoto D, et al. MUTYH, an adenine DNA glycosylase, mediates p53 tumor suppression via PARP-dependent cell death. Oncogenesis. 2014;3(10):e121–e121. doi: 10.1038/oncsis.2014.35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.