232
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Renoprotective effect of esculetin against ischemic acute kidney injury-diabetic comorbidity

, , , &
Pages 69-87 | Received 13 Sep 2023, Accepted 11 Jan 2024, Published online: 12 Feb 2024

References

  • Abebe A, Kumela K, Belay M, et al. Mortality and predictors of acute kidney injury in adults: a hospital-based prospective observational study. Sci Rep. 2021;11(1):15672. doi: 10.1038/s41598-021-94946-3.
  • Kurzhagen JT, Dellepiane S, Cantaluppi V, et al. AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol. 2020;33(6):1171–1187. doi: 10.1007/s40620-020-00793-2.
  • Sharma N, Malek V, Mulay SR, et al. Angiotensin II type 2 receptor and angiotensin-converting enzyme 2 mediate ischemic renal injury in diabetic and non-diabetic rats. Life Sci. 2019;235:116796. doi: 10.1016/j.lfs.2019.116796.
  • Kale A, Sankrityayan H, Gaikwad AB. Epigenetic restoration of endogenous klotho expression alleviates acute kidney injury-diabetes comorbidity. Life Sci. 2022;288:120194. doi: 10.1016/j.lfs.2021.120194.
  • Harding JL, Li Y, Burrows NR, et al. US trends in hospitalizations for dialysis-requiring acute kidney injury in people with versus without diabetes. Am J Kidney Dis. 2020;75(6):897–907. doi: 10.1053/j.ajkd.2019.09.012.
  • Kellum JA, Romagnani P, Ashuntantang G, et al. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. doi: 10.1038/s41572-021-00284-z.
  • Tang C, Cai J, Yin X-M, et al. Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol. 2021;17(5):299–318. doi: 10.1038/s41581-020-00369-0.
  • Wang Y, Tang C, Cai J, et al. PINK1/parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury. Cell Death Dis. 2018;9(11):1113. doi: 10.1038/s41419-018-1152-2.
  • Tang C, Han H, Yan M, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy. 2018;14(5):880–897. doi: 10.1080/15548627.2017.1405880.
  • Su L, Zhang J, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy. 2022;19(2):401–414. doi: 10.1080/15548627.2022.2084862.
  • Wang Y, Zhu J, Liu Z, et al. The PINK1/PARK2/optineurin pathway of mitophagy is activated for protection in septic acute kidney injury. Redox Biol. 2021;38:101767. doi: 10.1016/j.redox.2020.101767.
  • Liu P, Guo C, Cui Y, et al. Activation of PINK1/parkin-mediated mitophagy protects against apoptosis in kidney damage caused by aluminum. J Inorg Biochem. 2022;230:111765. doi: 10.1016/j.jinorgbio.2022.111765.
  • Sulkshane P, Ram J, Thakur A, et al. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol. 2021;45:102047. doi: 10.1016/j.redox.2021.102047.
  • Lee Y, Stevens DA, Kang S-U, et al. PINK1 primes parkin-mediated ubiquitination of PARIS in dopaminergic neuronal survival. Cell Rep. 2017;18(4):918–932. doi: 10.1016/j.celrep.2016.12.090.
  • Lin Q, Li S, Jiang N, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019;26:101254. doi: 10.1016/j.redox.2019.101254.
  • Kadakol A, Sharma N, Kulkarni YA, et al. Esculetin: a phytochemical endeavor fortifying effect against non-communicable diseases. Biomed Pharmacother. 2016;84:1442–1448. doi: 10.1016/j.biopha.2016.10.072.
  • Kadakol A, Malek V, Goru SK, et al. Esculetin reverses histone H2A/H2B ubiquitination, H3 dimethylation, acetylation and phosphorylation in preventing type 2 diabetic cardiomyopathy. J Funct Foods. 2015;17:127–136. doi: 10.1016/j.jff.2015.05.017.
  • Kadakol A, Malek V, Goru SK, et al. Esculetin attenuates alterations in ang II and acetylcholine mediated vascular reactivity associated with hyperinsulinemia and hyperglycemia. Biochem Biophys Res Commun. 2015;461(2):342–347. doi: 10.1016/j.bbrc.2015.04.036.
  • Kadakol A, Malek V, Goru SK, et al. Esculetin ameliorates insulin resistance and type 2 diabetic nephropathy through reversal of histone H3 acetylation and H2A lysine 119 monoubiquitination. J Funct Foods. 2017;35:256–266. doi: 10.1016/j.jff.2017.05.051.
  • Pandey A, Raj P, Goru SK, et al. Esculetin ameliorates hepatic fibrosis in high fat diet induced non-alcoholic fatty liver disease by regulation of FoxO1 mediated pathway. Pharmacol Rep. 2017;69(4):666–672. doi: 10.1016/j.pharep.2017.02.005.
  • Singuru G, Pulipaka S, Shaikh A, et al. Therapeutic efficacy of mitochondria-targeted esculetin in the improvement of NAFLD-NASH via modulating AMPK-SIRT1 axis. Int Immunopharmacol. 2023;124(Pt B):111070. doi: 10.1016/j.intimp.2023.111070.
  • Xia M, Wu Z, Wang J, et al. The coumarin-derivative esculetin protects against lipotoxicity in primary rat hepatocytes via attenuating JNK-mediated oxidative stress and attenuates free fatty acid-induced lipid accumulation. Antioxidants. 2023;12(11):1922. doi: 10.3390/antiox12111922.
  • Danis A, Baranoglu Kilinc Y, Torun IE, et al. Esculetin alleviates pentylenetetrazole-induced seizures, cognitive impairment and pro-inflammatory cytokines and suppresses penicillin-induced epileptiform activity in rats. Life Sci. 2023;313:121300. doi: 10.1016/j.lfs.2022.121300.
  • Xu B, Zhu L, Chu J, et al. Esculetin improves cognitive impairments induced by transient cerebral ischaemia and reperfusion in mice via regulation of mitochondrial fragmentation and mitophagy. Behav Brain Res. 2019;372:112007. doi: 10.1016/j.bbr.2019.112007.
  • Percie Du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab. 2020;40(9):1769–1777. doi: 10.1177/0271678X20943823.
  • Kale A, Shelke V, Sankrityayan H, et al. Klotho restoration via ACE2 activation: a potential therapeutic strategy against acute kidney injury-diabetes comorbidity. Biochim Biophys Acta Mol Basis Dis. 2022;1868(12):166532. doi: 10.1016/j.bbadis.2022.166532.
  • Wang C, Pei A, Chen J, et al. A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice. J Neurochem. 2012;121(6):1007–1013. doi: 10.1111/j.1471-4159.2012.07744.x.
  • Shelke V, Kale A, Dagar N, et al. Concomitant inhibition of TLR-4 and SGLT2 by phloretin and empagliflozin prevents diabetes-associated ischemic acute kidney injury. Food Funct. 2023;14(11):5391–5403. doi: 10.1039/d3fo01379k.
  • Pandey A, Goru SK, Kadakol A, et al. Differential regulation of angiotensin converting enzyme 2 and nuclear factor-κB by angiotensin II receptor subtypes in type 2 diabetic kidney. Biochimie. 2015;118:71–81. doi: 10.1016/j.biochi.2015.08.005.
  • Goru SK, Kadakol A, Malek V, et al. Diminazene aceturate prevents nephropathy by increasing glomerular ACE2 and AT2 receptor expression in a rat model of type1 diabetes. Br J Pharmacol. 2017;174(18):3118–3130. doi: 10.1111/bph.13946.
  • Kaneko T, Tahara S, Takabayashi F. Suppression of lipid hydroperoxide-induced oxidative damage to cellular DNA by esculetin. Biol Pharm Bull. 2003;26(6):840–844. doi: 10.1248/bpb.26.840.
  • Jung WK, Park S-B, Yu HY, et al. Antioxidant efficacy of esculetin against Tert-Butyl hydroperoxide-induced oxidative stress in HEK293 cells. Curr Issues Mol Biol. 2022;44(12):5986–5994. doi: 10.3390/cimb44120407.
  • Turnbull RE, Sander KN, Turnbull J, et al. Profiling oxylipins released from human platelets activated through the GPVI collagen receptor. Prostaglandins Other Lipid Mediat. 2022;158:106607. doi: 10.1016/j.prostaglandins.2021.106607.
  • Sankrityayan H, Kale A, Shelke V, et al. Cyproheptadine, a SET7/9 inhibitor, reduces hyperglycaemia-induced ER stress alleviating inflammation and fibrosis in renal tubular epithelial cells. Arch Physiol Biochem. 2022;:1–9. doi: 10.1080/13813455.2022.2105365.
  • Pu Q, Guo X-X, Hu J-J, et al. Nicotinamide mononucleotide increases cell viability and restores tight junctions in high-glucose-treated human corneal epithelial cells via the SIRT1/Nrf2/HO-1 pathway. Biomed Pharmacother. 2022;147:112659. doi: 10.1016/j.biopha.2022.112659.
  • Kim J-H, Baek J-I, Lee I-K, et al. Protective effect of berberine chloride against cisplatin-induced ototoxicity. p. Genes Genomics. 2022;44(1):1–7. doi: 10.1007/s13258-021-01157-1.
  • Gong D-J, Wang L, Yang Y-Y, et al. Diabetes aggravates renal ischemia and reperfusion injury in rats by exacerbating oxidative stress, inflammation, and apoptosis. Ren Fail. 2019;41(1):750–761. doi: 10.1080/0886022X.2019.1643737.
  • Liang N-N, Zhao Y, Guo Y-Y, et al. Mitochondria-derived reactive oxygen species are involved in renal cell ferroptosis during lipopolysaccharide-induced acute kidney injury. Int Immunopharmacol. 2022;107:108687. doi: 10.1016/j.intimp.2022.108687.
  • Saita S, Shirane M, Nakayama KI. Selective escape of proteins from the mitochondria during mitophagy. Nat Commun. 2013;4(1):1410. doi: 10.1038/ncomms2400.
  • Jiang X-S, Chen X-M, Hua W, et al. PINK1/parkin mediated mitophagy ameliorates palmitic acid-induced apoptosis through reducing mitochondrial ROS production in podocytes. Biochem Biophys Res Commun. 2020;525(4):954–961. doi: 10.1016/j.bbrc.2020.02.170.
  • Liu W, Chen C, Gu X, et al. AM1241 alleviates myocardial ischemia-reperfusion injury in rats by enhancing Pink1/parkin-mediated autophagy. Life Sci. 2021;272:119228. doi: 10.1016/j.lfs.2021.119228.
  • Chekol Tassew W, Birhan N, Zewdu Y. Incidence and predictors of acute kidney injury among newly diagnosed type 2 diabetes patients at chronic follow-up clinic of university of gondar comprehensive specialized hospital: a retrospective follow-up study. Res Rep Urol. 2021;13:613–622. doi: 10.2147/RRU.S306467.
  • Dima C, Assadpour E, Dima S, et al. Bioavailability of nutraceuticals: role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr Rev Food Sci Food Saf. 2020;19(3):954–994. doi: 10.1111/1541-4337.12547.
  • Daliu P, Santini A, Novellino E. From pharmaceuticals to nutraceuticals: bridging disease prevention and management. Expert Rev Clin Pharmacol. 2019;12(1):1–7. doi: 10.1080/17512433.2019.1552135.
  • Zhang Y, Li Z, Wu H, et al. Esculetin alleviates murine lupus nephritis by inhibiting complement activation and enhancing Nrf2 signaling pathway. J Ethnopharmacol. 2022;288:115004. doi: 10.1016/j.jep.2022.115004.
  • Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 2022;23(2):141–161. doi: 10.1038/s41580-021-00415-0.
  • Avila-Rojas SH, Aparicio-Trejo OE, Briones-Herrera A, et al. Alterations in mitochondrial homeostasis in a potassium dichromate model of acute kidney injury and their mitigation by curcumin. Food Chem Toxicol. 2020;145:111774. doi: 10.1016/j.fct.2020.111774.
  • Yang Y-Y, Gong D-J, Zhang J-J, et al. Diabetes aggravates renal ischemia-reperfusion injury by repressing mitochondrial function and PINK1/parkin-mediated mitophagy. Am J Physiol Renal Physiol. 2019;317(4):F852–F864. doi: 10.1152/ajprenal.00181.2019.
  • Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11(4):1845–1863. doi: 10.7150/thno.50905.
  • Jabbari H, Roushandeh AM, Rostami MK, et al. Mitochondrial transplantation ameliorates ischemia/reperfusion-induced kidney injury in rat. Biochim Biophys Acta Mol Basis Dis. 2020;1866(8):165809. doi: 10.1016/j.bbadis.2020.165809.
  • Rodger CE, McWilliams TG, Ganley IG. Mammalian mitophagy–from in vitro molecules to in vivo models. Febs J. 2018;285(7):1185–1202. doi: 10.1111/febs.14336.
  • Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14(5):291–312. doi: 10.1038/nrneph.2018.9.
  • Ding X-Q, Jian T-Y, Gai Y-N, et al. Chicoric acid attenuated renal tubular injury in HFD-induced chronic kidney disease mice through the promotion of mitophagy via the Nrf2/PINK/parkin pathway. J Agric Food Chem. 2022;70(9):2923–2935. doi: 10.1021/acs.jafc.1c07795.
  • Li C, Li L, Yang M, et al. PACS-2 ameliorates tubular injury by facilitating endoplasmic reticulum–mitochondria contact and mitophagy in diabetic nephropathy. Diabetes. 2022;71(5):1034–1050. doi: 10.2337/db21-0983.
  • Dagar N, Kale A, Steiger S, et al. Receptor-mediated mitophagy: an emerging therapeutic target in acute kidney injury. Mitochondrion. 2022;66:82–91. doi: 10.1016/j.mito.2022.08.004.
  • Duan P, Tan J, Miao Y, et al. PINK1/Parkin-mediated mitophagy plays a protective role in albumin overload-induced renal tubular cell injury. Front Biosci (Landmark Ed). 2022;27(6):184. doi: 10.31083/j.fbl2706184.
  • Tagawa A, Yasuda M, Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes. 2016;65(3):755–767. doi: 10.2337/db15-0473.
  • Zhang Q, Deng Q, Zhang J, et al. Activation of the Nrf2-ARE pathway ameliorates hyperglycemia-mediated mitochondrial dysfunction in podocytes partly through Sirt1. Cell Physiol Biochem. 2018;48(1):1–15. doi: 10.1159/000491658.
  • Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88(Pt B):179–188. doi: 10.1016/j.freeradbiomed.2015.04.036.
  • Xiao L, Xu X, Zhang F, et al. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 2017;11:297–311. doi: 10.1016/j.redox.2016.12.022.
  • Arora R, Sawney S, Saini V, et al. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer. 2016;15(1):64. doi: 10.1186/s12943-016-0550-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.