9
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Oxygen concentration regulates NO-dependent relaxation of aortic smooth muscles

, , , , , , & show all
Pages 287-294 | Received 10 Nov 1997, Published online: 07 Jul 2009

References

  • Moncada S., Palmer R.M., Higgs E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacological Reviews 1991; 43: 109–142
  • Knowles R.G., Moncada S. Nitric oxide as a signal in blood vessels. Trends in Biochemical Sciences 1992; 17: 399–402
  • Lowenstein C.J., Snyder S.H. Nitric oxide, a novel biologic messenger. Cell 1992; 70: 705–707
  • Gopalakrishna R., Chen Z.H., Gundimeda Y. Nitric oxide and nitric oxide generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. The Journal of Biological Chemistry 1993; 268: 27180–27185
  • Michetti M., Salamino F., Melloni E., Pontremoli S. Reversible inactivation of calpain isoforms by nitric oxide. Biochemical and Biophysical Research Communications 1995; 207: 1009–1014
  • Richter C., Gogvadze V., Schlapbach R., Schweizer M., Schlegel J. Nitric oxide kills hepatocytes by mobilizing mitochondrial calcium. Biochemical and Biophysical Research Communications 1994; 105: 1143–1150
  • Perrella M.A., Hildebrand F.L., Jr., Margulies K.B., Burnett J.C., Jr. Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function. American Journal of Physiology 1991; 261: R323–R328
  • Robertson B.E., Schubert R., Hescheler J., Nelson M.T. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. American Journal of Physiology 1993; 265: C299–C303
  • Taniguchi J., Furukawa K.-I., Shigekawa M. Maxi K+ channels are stimulated by cyclic guanosine monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells. Pflugers Archiv-European Journal of Physiology 1993; 423: 167–172
  • Pohl U., Busse R. Hypoxia stimulates release of endothelium-derived relaxant factor. American Journal of Physiology 1989; 256: H1595–H1600
  • Feigl E.O. Coronary physiology. Physiological Reviews 1983; 63: 1–205
  • Park K.H., Rubin L.E., Gross S.S., Levi R. Nitric oxide is a mediator of hypoxic coronary vasodilatation. Relation to adenosine and cyclooxygenase-derived metabolites. Circulation Research 1992; 71: 992–1001
  • Kalsner S. Hypoxic relaxation in functionally intact cattle coronary artery segments involves K+ ATP channels. Journal of Pharmacology and Experimental Therapeutics 1995; 275: 1219–1226
  • Roberts A.M., Messina E.J., Kaley G. Prostacycline (PGI2) mediates hypoxic relaxation of bovine coronary artery strips. Prostaglandins 1981; 21: 555–569
  • Yang B.C., Mehta J.L. Prior episode of anoxia attenuates vasorelaxation in response to subsequent episode of anoxia. American Journal of Physiology 1994; 266: H974–H979
  • Bolotina V.M., Najibi S., Palacino J.J., Pagano P.J., Cohen R.A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368: 850–853
  • Ford P.C., Wink D.A., Stanbury D.N. Auto-oxidation kinetics of aqueous nitric oxide. FEBS Letters 1993; 326: 1–3
  • Wink D.A., Darbyshire J.F., Nims R.W., Saavedera J.E., Ford P.C. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: Determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chemical Research in Toxicology 1993; 6: 23–27
  • Takehara Y., Kanno T., Yoshioka T., Inoue M., Utsumi K. Oxygen-dependent regulation of mitochondrial energy metabolism by nitric oxide. Archives of Biochemistry and Biophysics 1995; 323: 27–32
  • Okada S., Takehara Y., Yabuki M., Yoshioka T., Yasuda M., Inoue M., Utsumi K. Nitric oxide, a physiological modulator of mitochondrial function. Physiological Chemistry and Physics and Medical NMR 1996; 28: 69–82
  • Takehara Y., Nakahara H., Inai Y., Yabuki M., Yoshioka M., Inoue M., Hortone A.A., Utsumi K. Oxygen-dependent reversible inhibition of mitochondrial respiration by nitric oxide. Cell Structure and Function 1996; 22: 251–258
  • Inai Y., Takehara Y., Yabuki M., Sato E.F., Akiyama J., Inoue M., Horton A.A., Utsumi K. Oxygen-dependent regulation of Ehrlich ascites tumor cell respiration by nitric oxide. Cell Structure and Function 1996; 21: 151–157
  • Nishikawa M., Sato E.F., Utsumi K., Inoue M. Oxygen-dependent regulation of energy metabolism in ascites tumor cells by nitric oxide. Cancer Research 1996; 56: 4535–4540
  • Iha S., Orita K., Kanno T., Utsumi T., Sato E.F., Inoue M., Utsumi K. Oxygen-dependent inhibition of neutrophil respiratory burst by nitric oxide. Free Radical Research 1996; 25: 489–498
  • Yabuki M., Inai Y., Yoshioka T., Yasuda T., Inoue M., Utsumi K. Oxygen-dependent fragmentation of cellular DNA by nitric oxide. Free Radical Research 1997; 26: 245–255
  • Muramatsu I., Kigoshi S., Oshita M. Two distinct a1-adrenoreceptor subtypes involved in noradrenaline contraction of rabbit thoracic aorta. British Journal of Pharmacology 1990; 101: 662–666
  • Furchgoott R.F. Bioassay with isolated vascular tissue for endothelium-denuded relaxing factor, nitric oxide and nitric oxide donors. Methods in Nitric Oxide Research, M. Feelisch, J.S. Stamler. John Wiley & Sons, England 1996; 567–581
  • Bergmeyer H.U. Adenosin-5′-triphosphate. Methods of Enzymatic Analysis, H.U. Bergmeyer. Verlag Chemie GmbH, Weinheim/BergstrGermany 1974; 2007–2111
  • Markwell A.A., Haas S.M., Bieber L.L., Tolbert N.E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry 1978; 87: 206–210
  • Gupta S., McArthur C., Grady C., Ruderman N.B. Stimulation of vascular Na+-K+-ATPase activity by nitric oxide: a cGMP-independent effect. American Journal of Physiology 1994; 266: H2146–H2151
  • Rubanyi G.M., Vanhoutte P.M. Superoxide anions and hyperoxia inactivate endothelium-drived relaxing factor. American Journal of Physiology 1986; 250: H822–H827
  • Mohazzab-H K.M., Kaminsky P.M., Fayngersh R.P., Wolin M.S. Oxygen-elicited responses in calf coronary arteries: role of H2O2 production via NADH-drived superoxide. American Journal of Physiology 1996; 270: H1044–H1053
  • Huie R.E., Padmaja S. The reaction rate of nitric oxide with superoxide. Free Radical Research Communications 1993; 18: 195–199
  • Mohazzab-H K.M., Wolin M.S. Site of superoxide anion production in calf pulmonary arterial smooth muscle. American Journal of Physiology 1994; 267: L815–L822
  • Katusic Z.S. Superoxide anion and endothelial regulation of arterial tone. Free Radical Biology & Medicine 1996; 20: 443–448
  • Wolin M.S., Cherry P.D., Rodenburg J.M., Messina E.J., Kaley G. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion. Journal of Pharmacology and Experimental Therapeutics 1990; 63: 872–876
  • Ishida Y., Paul R.J. Effect of hypoxia on high-energy phosphagen content, energy metabolism and isometric force in guinea-pig taenia caeci. Journal of Physiology (London) 1990; 424: 41–56

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.