1,914
Views
34
CrossRef citations to date
0
Altmetric
Research Article

Polymeric Nanoparticles for Enhancing Antiretroviral Drug Therapy

, , &
Pages 493-501 | Received 07 Feb 2008, Accepted 30 Mar 2008, Published online: 20 Oct 2008

REFERENCES

  • M. M. Amiji, T. K. Vyas, and L. K. Shah. (2006). Role of nanotechnology in HIV/AIDS treatment: potential to overcome the viral reservoir challenge. Discov. Med. 6 (34):157–162.
  • A. Bender, V. Schfer, A. M. Steffan, C. Royer, J. Kreuter, H. von Rubsamen-Waigmann, and H Briesen. (1994). Inhibition of HIV in vitro by antiviral drug-targeting using nanoparticles. Res. Virol. 145 (34):215–220.
  • A. R. Bender, H. von Briesen, J. Kreuter, I. B. Duncan, and H Rubsamen-Waigimann. (1996). Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrob. Agents Chemother. 40 (6):1467–1471.
  • H. Benghuzzi. (2006). Long-term sustained delivery of 3′-azido-2′3′-dideoxythymidine in vivo by means of HA and TCP delivery devices. Biomed. Sci. Instrum. 36:343–348.
  • H. Boudad, P. Legrand, M. Appel, M. H. Coconnier, and G Ponchel. (2001). Formulation and cytotoxicity of combined cyclodextrin poly(alkylcyanoacrylate) nanoparticles on Caco-2 cells monolayers intended for oral administration of saquinavir. STP Pharma. Sci. 11 (5):369–375.
  • L. Brannon-Peppas, and J. O. Blanchette. (2004). Nanoparticle and targeted systems for cancer therapy. Adv. Drug. Deliv. Rev. 56 (11):1649–1659.
  • O. J. Cohen, A. Kinter, and A. S. Fauci. (1997). Host factors in the pathogenesis of HIV disease. Immunol. Rev. 159:31–48.
  • F. De Jaeghere, E. Allemann, F. Kubel, B. Galli, R. Cozens, E. Doelker, and R. Gurny. (2000). Oral bioavailability of a poorly water soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: effect of the particle size and nutritional state. J. Control Release 68 (2):291–298.
  • A. Dembri, M. J. Montisci, J. C. Gantier, H. Chacun, and G. Ponchel. (2001). Targeting of 3′-azido 3′-deoxythymidine (AZT)-loaded poly(isohexylcyanoacrylate) nanospheres to the gastrointestinal mucosa and associated lymphoid tissues. Pharm. Res. 18 (4):467–473.
  • S. R. Dipali, Y. J. Lin, G. V. Ravis, and G. V. Betageri. (1997). Pharmacokinetics and tissue distribution of a long circulating liposomal formulation of 2′3′ dideoxyinosine. Int. J. Pharmaceutics 152 (1):89–97.
  • H. Dou, C. J. Destache, J. R. Morehead, R. L. Mosley, M. D. Boska, J. Kingsley, S. Gorantla, L. Poluektova, J. A. Nelson, M. Chaubal, J. Werling, J. Kipp, B. E. Rabinow, and H. E. Gendelman. (2006). Development of macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108 (8):2827–2837.
  • H. Dou, J. Morehead, C. J. Destache, J. D. Kingsley, L. Shlyakhtenko, Y. Zhou, M. Chaubal, J. Werling, J. Kipp, B. E. Rabinow, and H. E. Gendelman. (2007). Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages. Virology 358 (1):148–158.
  • T. Dutta, H. B. Agashe, M. Garg, P. Balasubramanium, M. Kabra, and N. K. Jain. (2007). Poly (propyleneimine) dendrimer-based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J. Drug Target 15 (1):89–98.
  • A. S. Fauci, and H. C. Lane. The acquired immunodeficiency syndrome (AIDS): in Harrison's Principles of Internal Medicine.. McGraw-Hi Publishing, New York, (1991) 1402–1410.
  • J. F. Gagne, A. Desormeaux, S. Perron, M. J. Tremblay, and M. G. Bergeron. (2002). Targeted delivery of indinavir to HIV-1 primary reservoirs with immunoliposomes. Biochim. Biophys. Acta. 1558 (2):198–210.
  • M. P. Girard, S. K. Osmanov, and M. P. Kieny. (2006). A review of vaccine research and development: the human immunodeficiency virus (HIV). Vaccine 24 (19):4062–4081.
  • D. Gopinath, D. Ravi, B. R. Rao, S. S. Apte, D. Renuka, and D. Rambhau. (2004). Ascorbyl palmitate vesicles (Aspasomes): formation, characterization and applications. Int. J. Pharm. 271 (1–2):95–113.
  • H. Heiati, R. Tawashi, and N. C. Phillips. (1998). Solid lipid nanoparticles as drug carriers II. Plasma stability and biodistribution of solid lipid nanoparticles containing the lipophilic prodrug 3′-azido-3′-deoxythymidine palmitate in mice. Int. J. Pharm. 174 (1–2):71–80.
  • H. Heiati, R. Tawashi, R. R. Shivers, and N. C. Phillips. (1997). Solid lipid nanoparticles as drug carriers 1. Incorporation and retention of the lipophilic prodrug 3′-azido-3′-deoxythymidine palmitate. Int. J. Pharm. 146:123–131.
  • L. Highleyman. HIV Drugs and the HIV Lifecycle. , , (2003) Available from: http://www.thewellproject.org/en_US/Treatmentand_Trials/Anti_HIV_Meds/Lifecycle_and_ARVs.jsp[Cited 24/10/07].
  • T. Kawaguchi, T. Hasegawa, K. Juni, and T. Seki. (1991). Rectal absorption of Zidovudine. Int. J. Pharm. 77 (1):71–74.
  • T. Kawaguchi, T. Hasegawa, T. Seki, K. Juni, Y. Morimoto, A. Miyakawa, and M. Saneyoshi. (1992). Prodrugs of 2′,3′-dideoxyinosine (DDI): improved oral bioavailability via hydrophobic esters. Chem. Pharm. Bull (Tokyo) 40 (5):1338–1340.
  • Y. C. Kuo, and C. Y. Kuo. (2007). Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles. Int. J. Pharm. 351 (1–2):271–281.
  • Y. C. Kuo, and H. H. Chen. (2006). Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood-brain barrier. Int. J. Pharm. 327 (1–2):160–169.
  • Y. C. Kuo, and C. Y. Kuo. (2007). Electromagnetic interference in the permeability of saquinavir across the blood–brain barrier using nanoparticulate carriers. Int. J. Pharm.
  • Y. C. Kuo, and F. L. Su. (2007). Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmetheorylate, and solid lipid nanoparticles. Int. J. Pharm. 340 (1–2):143–152.
  • J. M. Lanao, E. Briones, and C. I. Colino. (2007). Recent advances in delivery systems for anti-HIV1 therapy. J. Drug. Target. 15 (1):21–36.
  • J. C. Leroux, R. Cozens, J. L. Roesel, B. Galli, F. Kubel, E. Doelker, and R. Gurny. (1995). Pharmacokinetics of a novel HIV-1 protease inhibitor incorporated into biodegradable or enteric nanoparticles following intravenous and oral administration to mice. J. Pharm. Sci. 84 (12):1387–1391.
  • R. Löbenberg, L. Araujo, and J. Kreuter. (1997). Body distribution of azidothymidine bound to nanoparticles after oral administration. Eur. J. Pharm. Biopharm. 44 (2):127–132.
  • R. Löbenberg, L. Araujo, H. von Briesen, E. Rodgers, and J. Kreuter. (1998). Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after i.v. injection to rats. J. Control Release 50 (1–3):21–30.
  • S. Lucas. (2001). Update on the pathology of AIDS. Intensive. Crit. Care Nurs. 17 (3):155–166.
  • A. G. Mamalis. (2006). Recent advances in nanotechnology. J. Mat. Protec. 181 (1–3):52–58.
  • H. Mirchandani, and Y. W. Chien. (1993). Drug delivery approaches for anti-HIV drugs. Int. J. Pharm. 95 (1–3):1–21.
  • P. Naidoo. Barriers to HIV care and treatment by doctors: a review of the literature. SA Fam. Pract. 48: (In press)
  • S. T. Narishetty, and R. Panchagnula. (2005). Effect of L-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J. Control Release 102 (1):59–70.
  • S. Pang, Y. Koyanagi, S. Miles, C. Wiley, H. V. Vinters, and I. S. Chen. (1990). High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 343 (6253):85–89.
  • J. Pamyam, and V. Labhasetwar. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55 (3):329–347.
  • K. Park. (2007). Nanotechnology: what it can do for drug delivery. J. Control Release 120 (1–2):1–3.
  • D. Pieribone. The HIV Life Cycle. , , (2002/2003) Available from: http://www.thebody.com/content/art14193.html[Cited 24/20/07].
  • R. C. Rathbun, S. M. Lockhart, and J. R. Stephens. (2006). Current HIV treatment guidelines—an overview. Curr. Pharm. Des. 12 (9):1045–1063.
  • C. Sachez-Lafuente, M. Teresa Faucci, M. Fernandez-Arevalo, J. Alvarez-Fuentes, A. M. Rabasco, and P. Mura. (2002). Development of sustained release matrix tablets of didanosine containing methacrylic and ethylcellulose polymers. Int. J. Pharm. 234 (1–2):213–221.
  • V. Schafer, H. von Briesen, R. Andreesen, A. M. Steffan, C. Royer, S. Troster, J. Kreuter, and H. Rubsamen-Waigmann. (1992). Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: a possibility for antiviral drug targeting. Pharm. Res. 9 (4):541–546.
  • T. Seki, N. Sato, T. Hasegawa, T. Kawaguchi, and K. Juni. (1994). Nasal absorption of zidovudine and its transport to cerebrospinal fluid in rats. Biol. Pharm. Bull. 17 (8):1135–1137.
  • L. K. Shah, and M. M. Amiji. (2006). Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm. Res. 23 (11):2638–2645.
  • A. Shahiwala, and M. M. Amiji. (2007). Nanotechnology-based delivery systems in HIV/AIDS therapy. Future HIV Ther. 1 (1):49–59.
  • C. A. Stoddart, and R. A. Reyes. (2006). Models of HIV-1 disease: a review of current status. Drug Discov. Today: Dis. Models 3:113–119.
  • S. Stolnik, L. Illum, and S. S. Davis. (1995). Long circulating microparticulate drug carriers. Adv. Drug. Deliv. Rev. 16 (2–3):195–214.
  • V. P. Torchilin. (2006). Multifunctional nanocarriers. Adv. Drug. Deliv. Rev. 58 (14):1532–1555.
  • UNAIDS: AIDS epidemic update. (2007) Available from: http://www.unaids.org/en/HIVdata/2007EpiUpdate/default.asp 2007. [cited 29/11/07].
  • B. Van Eerdenbrugh, L. Froyen, J. A. Martens, N. Blaton, P. Augustijns, M. Brewster, and G. Van den Mooter. (2007). Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int. J. Pharm. 338 (1–2):198–206.
  • C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, and P. Couvreur. (2003). Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control Release 93 (2):151–160.
  • S. P. Vyas, R. Subhedar, and S. Jain. (2006). Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. J. Pharm. Pharmacol 58 (3):321–326.
  • T. K. Vyas, L. Shah, and M. M. Amiji. (2006). Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv. 3 (5):613–628.
  • H. L. Wong, R. Bendayan, A. M. Rauth, Y. Li, and X. Y. Wu. (2007). Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug. Deliv. rev. 59 (6):491–504.
  • J. Xiang, X. Fang, and X. Li. (2002). Transbuccal delivery of 2′,3′-dideoxycytidine: in vitro permeation study and histological investigation. Int. J. Pharm. 231 (1):57–66.
  • T. Yajima, K. Juni, M. Saneyoshi, T. Hasegawa, and T. Kawaguchi. (1998). Direct transport of 2′,3′-didehydro-3′-deoxythymidine (D4T) and its ester derivatives to the cerebrospinal fluid via the nasal mucous membrane in rats. Biol. Pharm. Bull. 21 (3):272–277.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.