9,880
Views
31
CrossRef citations to date
0
Altmetric
Critical Review

Design of amphotericin B oral formulation for antifungal therapy

, &
Pages 1-9 | Received 29 Jun 2016, Accepted 15 Aug 2016, Published online: 03 Feb 2017

References

  • Barau C , Braun J , Vincent C , et al (2014). Pharmacokinetic study of raltegravir in HIV-infected patients with end-stage liver disease: the LIVERAL-ANRS 148 study. Clin Infect Dis 59:1177–84
  • Benincasa M , Pacor S , Wu W , et al (2011). Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 5:199–208
  • Bozo T , Brecska R , Grof P , et al (2015). Extreme resilience in cochleate nanoparticles. Langmuir 31:839–45
  • Chaudhari MB , Desai PP , Patel PA , et al (2016). Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv Transl Res 6:354–64
  • Dangi JS , Vyas SP , Dixit VK. (1998). Effect of various lipid-bile salt mixed micelles on the intestinal absorption of amphotericin-B in rat. Drug Dev Ind Pharm 24:631–5
  • Delmas G , Park S , Chen ZW. T , et al (2002). Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother 46:2704–7
  • Diro E , van Griensven J , Mohammed R , et al (2015). Atypical manifestations of visceral leishmaniasis in patients with HIV in north Ethiopia: a gap in guidelines for the management of opportunistic infections in resource poor settings. Lancet Infect Dis 15:122–9
  • Farmakiotis D , Tverdek FP , Kontoyiannis DP. (2013). The safety of amphotericin B lipid complex in patients with prior severe intolerance to liposomal amphotericin B. Clin Infect Dis 56:701–3
  • Fatma S , Talegaonkar S , Iqbal Z , et al (2016). Novel flavonoid-based biodegradable nanoparticles for effective oral delivery of etoposide by P-glycoprotein modulation: an in vitro, ex vivo and in vivo investigations. Drug Deliv 23:500–11
  • Fonte P , Araujo F , Silva C , et al (2015). Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv 33:1342–54
  • Gaba B , Fazil M , Ali A , et al (2015). Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv 22:691–700
  • Gershkovich P , Sivak O , Wasan EK , et al (2010). Biodistribution and tissue toxicity of amphotericin B in mice following multiple dose administration of a novel oral lipid-based formulation (iCo-009). J Antimicrob Chemother 65:2610–13
  • Gershkovich P , Wasan EK , Lin M , et al (2009). Pharmacokinetics and biodistribution of amphotericin B in rats following oral administration in a novel lipid-based formulation. J Antimicrob Chemother 64:101–8
  • Golenser J , Domb A. (2006). New formulations and derivatives of amphotericin B for treatment of leishmaniasis. Mini Rev Med Chem 6:153–62
  • Horev B , Klein MI , Hwang G , et al (2015). pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano 9:2390–404
  • Hussain A , Samad A , Singh SK , et al (2016). Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv 23:642–7
  • Ibrahim F , Gershkovich P , Sivak O , et al (2012). Efficacy and toxicity of a tropically stable lipid-based formulation of amphotericin B (iCo-010) in a rat model of invasive candidiasis. Int J Pharm 436:318–23
  • Ibrahim F , Sivak O , Wasan EK , et al (2013). Efficacy of an oral and tropically stable lipid-based formulation of Amphotericin B (iCo-010) in an experimental mouse model of systemic candidiasis. Lipids Health Dis 12:158
  • Italia JL , Kumar MN , Carter KC. (2012). Evaluating the potential of polyester nanoparticles for per oral delivery of amphotericin B in treating visceral leishmaniasis. J Biomed Nanotechnol 8:695–702
  • Italia JL , Sharp A , Carter KC , et al (2011). Peroral amphotericin B polymer nanoparticles lead to comparable or superior in vivo antifungal activity to that of intravenous Ambisome(R) or Fungizone. PLoS One 6:e25744
  • Italia JL , Yahya MM , Singh D , et al (2009). Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm Res 26:1324–31
  • Jain S , Valvi PU , Swarnakar NK , et al (2012). Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol Pharm 9:2542–53
  • Kayser O , Olbrich C , Yardley V , et al (2003). Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm 254:73–5
  • Kumar R , Sahoo GC , Pandey K , et al (2015). Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv 22:383–8
  • Leon CG , Lee J , Bartlett K , et al (2011). In vitro cytotoxicity of two novel oral formulations of Amphotericin B (iCo-009 and iCo-010) against Candida albicans, human monocytic and kidney cell lines. Lipids Health Dis 10:144
  • Machado PR , Rosa ME , Guimaraes LH , et al (2015). Treatment of disseminated leishmaniasis with liposomal amphotericin B. Clin Infect Dis 61:945–9
  • Mat Azmi ID , Wu L , Wibroe PP , et al (2015). Modulatory effect of human plasma on the internal nanostructure and size characteristics of liquid-crystalline nanocarriers. Langmuir 31:5042–9
  • Messori A , Fadda V , Maratea D , et al (2013). Nephrotoxicity of different formulations of amphotericin B: summarizing evidence by network meta-analysis. Clin Infect Dis 57:1783–4
  • Mistro S , Maciel Ide M , de Menezes RG , et al (2012). Does lipid emulsion reduce amphotericin B nephrotoxicity? A systematic review and meta-analysis. Clin Infect Dis 54:1774–7
  • Miteva DO , Rutkowski JM , Dixon JB , et al (2010). Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106:920–31
  • Neumann A , Baginski M , Czub J. (2010). How do sterols determine the antifungal activity of amphotericin B? Free energy of binding between the drug and its membrane targets. J Am Chem Soc 132:18266–72
  • Osei-Twum JA , Wasan KM. (2015). Does P-glycoprotein contribute to amphotericin B epithelial transport in Caco-2 cells? Drug Dev Ind Pharm 41:1130–6
  • Patel PA , Patravale VB. (2011). AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration. J Biomed Nanotechnol 7:632–9
  • Perlin DS. (2004). Amphotericin B cochleates: a vehicle for oral delivery. Curr Opin Investig Drugs 5:198–201
  • Prajapati VK , Awasthi K , Yadav TP , et al (2012). An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. J Infect Dis 205:333–6
  • Prasad YV , Puthli SP , Eaimtrakarn S , et al (2003). Enhanced intestinal absorption of vancomycin with Labrasol and D-alpha-tocopheryl PEG 1000 succinate in rats. Int J Pharm 250:181–90
  • Randolph GJ , Miller NE. (2014). Lymphatic transport of high-density lipoproteins and chylomicrons. J Clin Invest 124:929–35
  • Risovic V , Boyd M , Choo E , et al (2003). Effects of lipid-based oral formulations on plasma and tissue amphotericin B concentrations and renal toxicity in male rats. Antimicrob Agents Chemother 47:3339–42
  • Risovic V , Rosland M , Sivak O , et al (2007). Assessing the antifungal activity of a new oral lipid-based amphotericin B formulation following administration to rats infected with Aspergillus fumigatus. Drug Dev Ind Pharm 33:703–7
  • Risovic V , Sachs-Barrable K , Boyd M , et al (2004). Potential mechanisms by which Peceol increases the gastrointestinal absorption of amphotericin B. Drug Dev Ind Pharm 30:767–74
  • Sachs-Barrable K , Lee SD , Wasan EK , et al (2008). Enhancing drug absorption using lipids: a case study presenting the development and pharmacological evaluation of a novel lipid-based oral amphotericin B formulation for the treatment of systemic fungal infections. Adv Drug Deliv Rev 60:692–701
  • Santangelo R , Paderu P , Delmas G , et al (2000). Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44:2356–60
  • Serrano DR , Lalatsa A , Dea-Ayuela MA , et al (2015). Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol Pharm 12:420–31
  • Shan W , Zhu X , Liu M , et al (2015). Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 9:2345–56
  • Shim YH , Kim YC , Lee HJ , et al (2011). Amphotericin B aggregation inhibition with novel nanoparticles prepared with poly(epsilon-caprolactone)/poly(n,n-dimethylamino-2-ethyl methacrylate) diblock copolymer. J Microbiol Biotechnol 21:28–36
  • Shukla S , Chufan EE , Singh S , et al (2014). Elucidation of the structural basis of interaction of the BCR-ABL kinase inhibitor, nilotinib (Tasigna) with the human ABC drug transporter P-glycoprotein. Leukemia 28:961–4
  • Silva AE , Barratt G , Cheron M , et al (2013). Development of oil-in-water microemulsions for the oral delivery of amphotericin B. Int J Pharm 454:641–8
  • Singh K , Tiwary AK , Rana V. (2013). Spray dried chitosan-EDTA superior microparticles as solid substrate for the oral delivery of amphotericin B. Int J Biol Macromol 58:310–19
  • Skiba-Lahiani M , Hallouard F , Mehenni L , et al (2015). Development and characterization of oral liposomes of vegetal ceramide based amphotericin B having enhanced dry solubility and solubility. Mater Sci Eng C Mater Biol Appl 48:145–9
  • Thornton SJ , Wasan KM. (2009). The reformulation of amphotericin B for oral administration to treat systemic fungal infections and visceral leishmaniasis. Expert Opin Drug Deliv 6:271–84
  • Verma RK , Pandya S , Misra A. (2011). Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles. J Biomed Nanotechnol 7:118–20
  • Volmer AA , Szpilman AM , Carreira EM. (2010). Synthesis and biological evaluation of amphotericin B derivatives. Nat Prod Rep 27:1329–49
  • Wang Y , Zheng Y , Zhang L , et al (2013). Stability of nanosuspensions in drug delivery. J Control Release 172:1126–41
  • Wasan EK , Bartlett K , Gershkovich P , et al (2009). Development and characterization of oral lipid-based amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans. Int J Pharm 372:76–84
  • Wasan EK , Gershkovich P , Zhao J , et al (2010). A novel tropically stable oral amphotericin B formulation (iCo-010) exhibits efficacy against visceral leishmaniasis in a murine model. PLoS Negl Trop Dis 4:e913
  • Wasan KM , Wasan EK , Gershkovich P , et al (2009). Highly effective oral amphotericin B formulation against murine visceral leishmaniasis. J Infect Dis 200:357–60
  • Wilcock BC , Endo MM , Uno BE , et al (2013). C2'-OH of amphotericin B plays an important role in binding the primary sterol of human cells but not yeast cells. J Am Chem Soc 135:8488–91
  • Yang Z , Chen M , Yang M , et al (2014). Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int J Nanomedicine 9:327–36
  • Yang Z , Liu M , Chen J , et al (2014). Development and characterization of amphotericin B nanosuspensions for oral administration through a simple top-down method. Curr Pharm Biotechnol 15:569–76
  • Yang Z , Tan Y , Chen M , et al (2012). Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech 13:1483–91
  • Zarif L , Graybill JR , Perlin D , et al (2000). Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 44:1463–9
  • Zu Y , Sun W , Zhao X , et al (2014). Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation. Eur J Pharm Sci 53:109–17