2,607
Views
22
CrossRef citations to date
0
Altmetric
Original Article

The development of mechanically formed stable nanobubbles intended for sonoporation-mediated gene transfection

, , , , , , & show all
Pages 320-327 | Received 16 Aug 2016, Accepted 14 Oct 2016, Published online: 06 Feb 2017

References

  • Abdalkader R, Kawakami S, Unga J, et al. (2015). Evaluation of the potential of doxorubicin loaded microbubbles as a theranostic modality using a murine tumor model. Acta Biomater 19:112–18
  • Alter J, Sennoga CA, Lopes DM, et al. (2009). Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. Ultrasound Med Biol 35:976–84
  • Attard P. (2013). The stability of nanobubbles. Eur Phys J Special Topics 1–22. doi:10.1140/epjst/e2013-01817-0
  • Barak M, Katz Y. (2005). Microbubbles: pathophysiology and clinical implications. Chest 128:2918–32
  • Cai WB, Yang HL, Zhang J, et al. (2015). The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging. Scientific Rep 5:13725
  • Cavalli R, Bisazza A, Trotta M, et al. (2012). New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. Int J Nanomed 7:3309–18
  • Cavalli R, Bisazza A, Lembo D. (2013). Micro- and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm 456:437–45
  • Cavalli R, Soster M, Argenziano M. (2016). Nanobubbles: a promising efficient tool for therapeutic delivery. Therapeut Deliv 7:117–38
  • Christiansen JP, French BA, Klibanov AL, et al. (2003). Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 29:1759–67
  • Garg S, Thomas AA, Borden MA. (2013). The effect of lipid monolayer in-plane rigidity on invivo microbubble circulation persistence. Biomaterials 34:6862–70
  • Giacca M, Zacchigna S. (2012). Virus-mediated gene delivery for human gene therapy. J Control Release 161:377–88
  • Karshafian R, Bevan PD, Williams R, et al. (2009). Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med Biol 35:847–60
  • Kawabata K, Takakura Y, Hashida M. (1995). The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm Res 12:825–30
  • Kawakami S, Higuchi Y, Hashida M. (2008). Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 97:726–45
  • Kwan JJ, Borden MA. (2012). Lipid monolayer collapse and microbubble stability. Adv Colloid Interf Sci 183–184:82–99
  • Lentacker I, De Cock I, Deckers R, et al. (2014). Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 72:49–64
  • Leong-Poi H, Kuliszewski MA, Lekas M, et al. (2007). Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circulat Res 101:295–303
  • Negishi Y, Omata D, Iijima H, et al. (2010). Enhanced laminin-derived peptide AG73-mediated liposomal gene transfer by bubble liposomes and ultrasound. Mol Pharm 7:217–26
  • Oda Y, Suzuki R, Mori T, et al. (2015). Development of fluorous lipid-based nanobubbles for efficiently containing perfluoropropane. Int J Pharm 487:64–71
  • Pathak A, Patnaik S, Gupta KC. (2009). Recent trends in non-viral vector-mediated gene delivery. Biotechnol J 4:1559–72
  • Qin S, Caskey CF, Ferrara KW. (2009). Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol 54:R27–57
  • Rovers TAM, Sala G, van der Linden E, Meinders MBJ. (2016). Effect of temperature and pressure on the stability of protein microbubbles. ACS Appl Mater Interfaces 8:333–40
  • Scholz C, Wagner E. (2012). Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 161:554–65
  • Shih R, Lee AP. (2016). Post-formation shrinkage and stabilization of microfluidic bubbles in lipid solution. Langmuir 32:1939–46
  • Sirsi SR, Borden MA. (2012). Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics 2:1208–22
  • Sirsi SR, Borden MA. (2014). State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev 72:3–14
  • Stride E, Edirisinghe M. (2008). Novel microbubble preparation technologies. Soft Matter 4:2350–9
  • Suzuki R, Oda Y, Utoguchi N, Maruyama K. (2011). Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J Control Release 149:36–41
  • Suzuki R, Takizawa T, Negishi Y, et al. (2008). Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles. J Control Release 125:137–44
  • Suzuki R, Maruyama K. (2010). Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure. Methods Mol Biol (Clifton, NJ) 605:473–86
  • Szíjjártó C, Rossi S, Waton G, Krafft MP. (2012). Effects of perfluorocarbon gases on the size and stability characteristics of phospholipid-coated microbubbles: Osmotic effect versus interfacial film stabilization. Langmuir 28:1182–9
  • De Temmerman ML, Dewitte H, Vandenbroucke RE, et al. (2011). MRNA-lipoplex loaded microbubble contrast agents for ultrasound-assisted transfection of dendritic cells. Biomaterials 32:9128–35
  • Un K, Kawakami S, Suzuki R, et al. (2010). Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials 31:7813–26
  • Un K, Kawakami S, Yoshida M, et al. (2011). The elucidation of gene transferring mechanism by ultrasound-responsive unmodified and mannose-modified lipoplexes. Biomaterials 32:4659–69
  • Unga J, Hashida M. (2014). Ultrasound induced cancer immunotherapy. Adv Drug Deliv Rev 72:144–53
  • Wang X, Liang HD, Dong B, et al. (2005). Gene transfer with microbubble ultrasound and plasmid DNA into skeletal muscle of mice: comparison between commercially available microbubble contrast agents. Radiology 237:224–9
  • Xie X, Lin W, Liu H, et al. (2015). Ultrasound-responsive nanobubbles contained with peptide-camptothecin conjugates for targeted drug delivery. Drug Deliv 7544:1–9