1,664
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Controllable continuous sub-tenon drug delivery of dexamethasone disodium phosphate to ocular posterior segment in rabbit

, , , &
Pages 452-458 | Received 24 Sep 2016, Accepted 21 Nov 2016, Published online: 06 Feb 2017

References

  • Abdul NN, Agarwal P, Agarwal R, et al. (2016). Intraocular distribution of topically applied hydrophilic and lipophilic substances in rat eyes. Drug Deliv 23:2765–71
  • Ambati J, Canakis CS, Miller JW, et al. (2000). Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci 41:1181–5
  • Ambati J, Gragoudas ES, Miller JW, et al. (2000). Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci 41:1186–91
  • Andonova VY. (2016). A new direction in ophthalmic development: nanoparticle drug delivery systems. Curr Pharm Des. [Epub ahead of print]
  • Bansal P, Garg S, Sharma Y, Venkatesh P. (2016). Posterior segment drug delivery devices: current and novel therapies in development. J Ocul Pharmacol Ther 32:135–44
  • Borooah S, Jeganathan VS, Ambrecht AM, et al. (2015). Long-term visual outcomes of intravitreal ranibizumab treatment for wet age-related macular degeneration and effect on blindness rates in south-east Scotland. Eye (Lond) 29:1156–61
  • Bourges JL, Gautier SE, Delie F, et al. (2003). Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 44:3562–9
  • Calvo P, Ferreras A, Al AF, et al. (2015). Dexamethasone intravitreal implant as adjunct therapy for patients with wet age-related macular degeneration with incomplete response to ranibizumab. Br J Ophthalmol 99:723–6
  • Chen Q, Zheng Y, Li Y, et al. (2012). The effect of deacetylated gellan gum on aesculin distribution in the posterior segment of the eye after topical administration. Drug Deliv 19:194–201
  • Chennamaneni SR, Mamalis C, Archer B, et al. (2013). Development of a novel bioerodible dexamethasone implant for uveitis and postoperative cataract inflammation. J Control Release 167:53–9
  • Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. (2010). Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci 51:5403–20
  • Eljarrat-Binstock E, Domb AJ. (2006). Iontophoresis: a non-invasive ocular drug delivery. J Control Release 110:479–89
  • Eljarrat-Binstock E, Orucov F, Aldouby Y, et al. (2008). Charged nanoparticles delivery to the eye using hydrogel iontophoresis. J Control Release 126:156–61
  • Eljarrat-Binstock E, Raiskup F, Frucht-Pery J, Domb AJ. (2005). Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J Control Release 106:386–90
  • Ghate D, Brooks W, McCarey BE, Edelhauser HF. (2007). Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci 48:2230–7
  • Hamdan J, Boulze M, Aziz A, et al. (2015). Corneal neovascularisation treatments compared: subconjunctival bevacizumab injections and/or photodynamic therapy. J Fr Ophtalmol 38:924–33
  • Hennessy AL, Katz J, Covert D, et al. (2010). Videotaped evaluation of eyedrop instillation in glaucoma patients with visual impairment or moderate to severe visual field loss. Ophthalmology 117:2345–52
  • Hettinga YM, Verhagen FH, van Genderen M, de Boer JH. (2014). Characteristics of childhood uveitis leading to visual impairment and blindness in the Netherlands. Acta Ophthalmol 92:798–804
  • Hosseini K, Matsushima D, Johnson J, et al. (2008). Pharmacokinetic study of dexamethasone disodium phosphate using intravitreal, subconjunctival, and intravenous delivery routes in rabbits. J Ocul Pharmacol Ther 24:301–8
  • Hsu J. (2007). Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol 18:235–9
  • Huang Z, Yang W, Zong Y, et al. (2016). A study of the dexamethasone sodium phosphate release properties from a periocular capsular drug delivery system. Drug Deliv 23:849–57
  • Janoria KG, Gunda S, Boddu SH, Mitra AK. (2007). Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 4:371–88
  • Jiang J, Moore JS, Edelhauser HF, Prausnitz MR. (2009). Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res 26:395–403
  • Kang-Mieler JJ, Osswald CR, Mieler WF. (2014). Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv 11:1647–60
  • Lajunen T, Nurmi R, Kontturi L, et al. (2016). Light activated liposomes: functionality and prospects in ocular drug delivery. J Control Release. [Epub ahead of print]
  • Liu S, Dozois MD, Chang CN, et al. (2016). Prolonged ocular retention of mucoadhesive nanoparticle eye drop formulation enables treatment of eye diseases using significantly reduced dosage. Mol Pharm 13:2897–905
  • Liu X, Wang M, Zhao C, et al. (2015). The efficacy and safety of subconjunctival triamcinolone acetonide injections in treatment of uveitic macular edema. Zhonghua Yan Ke Za Zhi 51:734–8
  • Lowder C, Belfort RJ, Lightman S, et al. (2011). Dexamethasone intravitreal implant for noninfectious intermediate or posterior uveitis. Arch Ophthalmol 129:545–53
  • Meng Y, Sun S, Li J, et al. (2014). Sustained release of triamcinolone acetonide from an episcleral plaque of multilayered poly-ɛ-caprolactone matrix. Acta Biomater 10:126–33
  • Miserocchi E, Berchicci L, Iuliano L, et al. (2016). Dexamethasone intravitreal implant in serpiginous choroiditis. Br J Ophthalmol. [Epub ahead of print]
  • Nagai N, Kaji H, Onami H, et al. (2014). A polymeric device for controlled transscleral multi-drug delivery to the posterior segment of the eye. Acta Biomater 10:680–7
  • Patane MA, Schubert W, Sanford T, et al. (2013). Evaluation of ocular and general safety following repeated dosing of dexamethasone phosphate delivered by transscleral iontophoresis in rabbits. J Ocul Pharmacol Ther 29:760–9
  • Peptu CA, Popa M, Savin C, et al. (2015). Modern drug delivery systems for targeting the posterior segment of the eye. Curr Pharm Des 21:6055–69. 2015-01-20
  • Pescina S, Govoni P, Antopolsky M, et al. (2015). Permeation of proteins, oligonucleotide and dextrans across ocular tissues: experimental studies and a literature update. J Pharm Sci 104:2190–202
  • Quek DT, Ong GT, Perera SA, et al. (2011). Persistence of patients receiving topical glaucoma monotherapy in an Asian population. Arch Ophthalmol 129:643–8
  • Smith SJ, Smith BD, Mohney BG. (2014). Ocular side effects following intravitreal injection therapy for retinoblastoma: a systematic review. Br J Ophthalmol 98:292–7
  • Suen WL, Wong HS, Yu Y, et al. (2013). Ultrasound-mediated transscleral delivery of macromolecules to the posterior segment of rabbit eye in vivo. Invest Ophthalmol Vis Sci 54:4358–65
  • Thakur A, Kadam RS, Kompella UB. (2011). Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids. Drug Metab Dispos 39:771–81
  • Thakur SR, Tekko I, McAvoy K, et al. (2016). Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Deliv. [Epub ahead of print]
  • Thrimawithana TR, Young S, Bunt CR, et al. (2011). Drug delivery to the posterior segment of the eye. Drug Discov Today 16:270–7
  • Tsang AC, Virgili G, Abtahi M, Gottlieb CC. (2016). Intravitreal dexamethasone implant for the treatment of macular edema in chronic non-infectious uveitis. Ocul Immunol Inflamm. [Epub ahead of print]
  • Weijtens O, van der Sluijs FA, Schoemaker RC, et al. (1997). Peribulbar corticosteroid injection: vitreal and serum concentrations after dexamethasone disodium phosphate injection. Am J Ophthalmol 123:358–63
  • Zatic T, Bendelic E, Paduca A, et al. (2015). Rapid assessment of avoidable blindness and diabetic retinopathy in Republic of Moldova. Br J Ophthalmol 99:832–6