1,745
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Suppression of chronic inflammation with engineered nanomaterials delivering nuclear factor κB transcription factor decoy oligodeoxynucleotides

, &
Pages 1249-1261 | Received 06 Jul 2017, Accepted 18 Aug 2017, Published online: 05 Sep 2017

References

  • Adriaansen J, Vervoordeldonk M, Tak P. (2006). Gene therapy as a therapeutic approach for the treatment of rheumatoid arthritis: innovative vectors and therapeutic genes. Rheumatology 45:656–68.
  • Aggarwal BB, Takada Y, Shishodia S, et al. (2004). Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol 42:341–53.
  • Athanasiou KA, Niederauer GG, Agrawal CM. (1996). Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93–102.
  • Bielinska A, Shivdasani RA, Zhang LQ, et al. (1990). Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science 250:997.
  • Borchard G. (2001). Chitosans for gene delivery. Adv Drug Deliv Rev 52:145–50.
  • Borgatti M, Bezzerri V, Mancini I, et al. (2008). Silencing of genes coding for transcription factors: biological effects of decoy oligonucleotides on cystic fibrosis bronchial epithelial cells. Minerva Biotecnologica 20:79.
  • Borgatti M, Bezzerri V, Mancini I, et al. (2007). Induction of IL-6 gene expression in a CF bronchial epithelial cell line by Pseudomonas aeruginosa is dependent on transcription factors belonging to the Sp1 superfamily. Biochem Biophys Res Commun 357:977–83.
  • Bourcier T, Sukhova G, Libby P. (1997). The nuclear factor κ-B signaling pathway participates in dysregulation of vascular smooth muscle cells in vitroand in human atherosclerosis. J Biol Chem 272:15817–24.
  • Boussif O, Lezoualc'h F, Zanta MA, et al. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 92:7297–301.
  • Bozkir A, Saka OM. (2004). Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Delivery 11:107–12.
  • Bradford JW, Baldwin AS. (2014). IKK/nuclear factor-kappaB and oncogenesis: roles in tumor-initiating cells and in the tumor microenvironment. Adv Cancer Res 121:125–145.
  • Brand K, Page S, Rogler G, et al. (1996). Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest 97:1715.
  • Buchanan KD, Huang S-L, Kim H, et al. (2010). Encapsulation of NF-κB decoy oligonucleotides within echogenic liposomes and ultrasound-triggered release. J Control Release 141:193–8.
  • Bullard DC. (2002). Adhesion molecules in inflammatory diseases: insights from knockout mice. Immunol Res 26:27–33.
  • Casscells W. (1992). Migration of smooth muscle and endothelial cells. Critical events in restenosis. Circulation 86:723–9.
  • Cicchitti L, Martelli M, Cerritelli F. (2015). Chronic inflammatory disease and osteopathy: a systematic review. PLoS One 10:e0121327.
  • Danhier F, Ansorena E, Silva JM, et al. (2012). PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–22.
  • Dass CR. (2002). Liposome-mediated delivery of oligodeoxynucleotides in vivo. Drug Deliv 9:169–80.
  • Davies M, Hagen PO. (1994). Pathobiology of intimal hyperplasia. Br J Surg 81:1254–69.
  • De Rosa G, Maiuri MC, Ungaro F, et al. (2005). Enhanced intracellular uptake and inhibition of NF‐κB activation by decoy oligonucleotide released from PLGA microspheres. J Gene Med 7:771–81.
  • De Stefano D. (2011). Oligonucleotides decoy to NF-kappaB: becoming a reality? Discov Med 12:97–105.
  • De Stefano D, Coletta C, Bianca Rd, et al. (2013). A decoy oligonucleotide to NF-κB delivered through inhalable particles prevents LPS-induced rat airway inflammation. Am J Respir Cell Mol Biol 49:288–95.
  • De Stefano D, De Rosa G, Carnuccio R. (2010). NFkappaB decoy oligonucleotides. Curr Opin Mol Ther 12:203–13.
  • De Stefano D, De Rosa G, Maiuri MC, et al. (2009). Oligonucleotide decoy to NF-κB slowly released from PLGA microspheres reduces chronic inflammation in rat. Pharmacol Res 60:33–40.
  • De Winther MP. (2005). Nuclear factor κB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25:904–14.
  • Deng Y, Wang CC, Choy KW, et al. (2014). Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538:217–27.
  • Derosa G, Stefano D, Laguardia V, et al. (2008). Novel cationic liposome formulation for the delivery of an oligonucleotide decoy to NF-κB into activated macrophages. Eur J Pharm Biopharm 70:7–18.
  • Detzer A, Overhoff M, Wünsche W, et al. (2009). Increased RNAi is related to intracellular release of siRNA via a covalently attached signal peptide. RNA 15:627–36.
  • Dhillon SS, Mastropaolo LA, Murchie R, et al. (2014). Higher activity of the inducible nitric oxide synthase contributes to very early onset inflammatory bowel disease. Clin Transl Gastroenterol 5:e46.
  • Dizaj SM, Jafari S, Khosroushahi AY. (2014). A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett 9:252.
  • Elliott MJ, Maini RN, Feldmann M, et al. (1994). Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 344:1105–10.
  • Fabre S, Apparailly F. (2011). Gene therapy for rheumatoid arthritis: current status and future prospects. BioDrugs 25:381–91.
  • Fattal E, Barratt G. (2009). Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. Br J Pharmacol 157:179–94.
  • Fichtner-Feigl S, Fuss IJ, Preiss JC, et al. (2005). Treatment of murine Th1- and Th2-mediated inflammatory bowel disease with NF-kappa B decoy oligonucleotides. J Clin Invest 115:3057–71.
  • Finotti A, Borgatti M, Bezzerri V, et al. (2012). Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 cells: recruitment of NF-kappaB to the IL-8 gene promoter and transcription of the IL-8 gene. Artificial DNA 3:97–104.
  • Fischer D, Osburg B, Petersen H, et al. (2004). Effect of poly (ethylene imine) molecular weight and pegylation on organ distribution and pharmacokinetics of polyplexes with oligodeoxynucleotides in mice. Drug Metab Dispos 32:983–92.
  • Fisher TL, Terhorst T, Cao X, et al. (1993). Intracellular disposition and metabolism of fluorescently-labled unmodified and modified oligouncleotides microijjected into mammalian cells. Nucl Acids Res 21:3857–65.
  • Funabashi H, Oura S, Saito M, et al. (2013). Targeted delivery of a decoy oligodeoxynucleotide to a single ES cell by femtoinjection. Nanomedicine 9:855–63.
  • Gascón AR, Pozo-Rodríguez AD, Solinís M. (2013). Non-viral delivery systems in gene therapy. Gene Ther. 1:27.
  • Gasparini C, Feldmann M. (2012). NF-κB as a target for modulating inflammatory responses. Curr Pharm Design 18:5735–45.
  • Ghosh G, Wang V Y-F, Huang D-B, et al. (2012). NF-κB regulation: lessons from structures. Immunol Rev 246:36–58.
  • Gill JS, Zhu X, Moore MJ, et al. (2002). Effects of NFκB decoy oligonucleotides released from biodegradable polymer microparticles on a glioblastoma cell line. Biomaterials 23:2773–81.
  • Glodde M, Sirsi S.R, Lutz G.J. (2006). Physiochemical properties of low and high molecular weight poly (ethylene glycol)-grafted poly (ethylene imine) copolymers and their complexes with oligonucleotides. Biomacromolecules 7:347–56.
  • Godbey W, Wu KK, Mikos AG. (1999). Poly(ethylenimine) and its role in gene delivery. J Control Release 60:149–60.
  • Griesenbach U, Scheid P, Hillery E, et al. (2000). Anti-inflammatory gene therapy directed at the airway epithelium. Gene Ther 7:306.
  • Hatano E, Bennett BL, Manning AM, et al. (2001). NF-κB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-α–and Fas-mediated apoptosis. Gastroenterology 120:1251–62.
  • Hattori Y, Sakaguchi M, Maitani Y. (2006). Folate-linked lipid-based nanoparticles deliver a NFkB decoy into activated murine macrophage-like RAW264. 7 Cells (Biopharmacy). Biol Pharm Bull 29:1516–20.
  • Hedley ML. (2003). Formulations containing poly(lactide-co-glycolide) and plasmid DNA expression vectors. Expert Opin Biol Ther 3:903–10.
  • Higuchi Y, Kawakami S, Oka M, et al. (2006). Suppression of TNFα production in LPS induced liver failure in mice after intravenous injection of cationic liposomes/NFκB decoy complex. Die Pharmazie 61:144–7.
  • Hinz M, Scheidereit C. (2014). The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep 15:46–61.
  • Hoesel B, Schmid JA. (2013). The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86.
  • Hoffmann F, Sass G, Zillies J, et al. (2009). A novel technique for selective NF-κB inhibition in Kupffer cells: contrary effects in fulminant hepatitis and ischaemia–reperfusion. Gut 58:1670–8.
  • Huang H, Sakurai F, Higuchi Y, et al. (2009). Suppressive effects of sugar-modified cationic liposome/NF-κB decoy complexes on adenovirus vector-induced innate immune responses. J Control Release 133:139–45.
  • Jääskeläinen I, Mönkkönen J, Urtti A. (1994). Oligonucleotide-cationic liposome interactions. A physicochemical study. Biochimica Et Biophysica Acta (BBA)-Biomembranes 1195:115–23.
  • Jääskeläinen I, Peltola S, Honkakoski P, et al. (2000). A lipid carrier with a membrane active component and a small complex size are required for efficient cellular delivery of anti-sense phosphorothioate oligonucleotides. Eur J Pharm Sci 10:187–93.
  • Jääskeläinen I, Sternberg B, Mönkkönen J, et al. (1998). Physicochemical and morphological properties of complexes made of cationic liposomes and oligonucleotides. Int J Pharm 167:191–203.
  • Jin L, Zeng X, Liu M, et al. (2014). Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 4:240–55.
  • Johnston SJ, Carroll JS. (2015). Transcription factors and chromatin proteins as therapeutic targets in cancer. Biochimica Et Biophysica Acta (BBA)-Reviews on Cancer 1855:183–92.
  • Joyce D, Albanese C, Steer J, et al. (2001). NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 12:73–90.
  • Juliano RL. (2016). The delivery of therapeutic oligonucleotides. Nucleic Acids Res 44:6518–48.
  • Juliano RL, Carver K, Cao C, et al. (2013). Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J Drug Targeting 21:27–43.
  • Kaneda Y. (2003). New vector innovation for drug delivery: development of fusigenic non-viral particles. Curr Drug Targets 4:599–602.
  • Kimura S, Egashira K, Chen L, et al. (2009). Nanoparticle-mediated delivery of nuclear factor κB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension 53:877–83.
  • Kirtane AR, Panyam J. (2013). Polymer nanoparticles: weighing up gene delivery. Nat Nanotechnol 8:805–6.
  • Kunath K, von Harpe A, Petersen H, et al. (2002). The structure of PEG-modified poly (ethylene imines) influences biodistribution and pharmacokinetics of their complexes with NF-κB decoy in mice. Pharm Res 19:810–17.
  • Kunugiza Y, Tomita T, Tomita N, et al. (2006). Inhibitory effect of ribbon-type NF-κB decoy oligodeoxynucleotides on osteoclast induction and activity in vitro and in vivo. Arthritis Res Ther 8:R103.
  • Kwon EJ, Bergen JM, Pun SH. (2008). Application of an HIV gp41-derived peptide for enhanced intracellular trafficking of synthetic gene and siRNA delivery vehicles. Bioconjugate Chem 19:920–7.
  • Lawrence T, Gilroy DW. (2007). Chronic inflammation: a failure of resolution? Int J Exp Pathol 88:85–94.
  • Ma Y, Zhang X, Xu X, et al. (2015). STAT3 decoy oligodeoxynucleotides-loaded solid lipid nanoparticles induce cell death and inhibit invasion in ovarian cancer cells. PLoS One 10:e0124924.
  • Mann M.J. (2005). Transcription factor decoys: a new model for disease intervention. Ann N Y Acad Sci 1058:128–39.
  • Matsushita H, Morishita R, Nata T, et al. (2000). Hypoxia-induced endothelial apoptosis through nuclear factor-κB (NF-κB)–mediated bcl-2 suppression. Circ Res 86:974–81.
  • McCartney-Francis N. (1993). Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 178:749–54.
  • Metelev V, Kubareva E, Oretskaya T. (2013). Regulation of activity of transcription factor NF-κB by synthetic oligonucleotides. Biochem Moscow 78:867–78.
  • Miyake T, Ihara S, Miyake T, et al. (2014). Prevention of neointimal formation after angioplasty using nuclear factor-κB decoy oligodeoxynucleotide-coated balloon catheter in rabbit model. Circ Cardiovasc Interv 7:787–96.
  • Morachis JM, Mahmoud EA, Sankaranarayanan J, et al. (2012). Triggered rapid degradation of nanoparticles for gene delivery. J Drug Deliv 2012;291219.
  • Morgan MJ, Liu Z-g. (2011). Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–15.
  • Morishita R. (2004). Molecular therapy to inhibit NFκB activation by transcription factor decoy oligonucleotides. Curr Opin Pharmacol 4:139–46.
  • Morishita R, Sugimoto T, Aoki M, et al. (1997). In vivo transfection of cis element “decoy” against nuclear factor-κB binding site prevents myocardial infarction. Nat Med 3:894–9.
  • Nakamura H, Aoki M, Tamai K, et al. (2002). Prevention and regression of atopic dermatitis by ointment containing NF-kB decoy oligodeoxynucleotides in NC/Nga atopic mouse model. Gene Ther 9:1221.
  • Nitta SK, Numata K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629–54.
  • Ono S, Date I, Onoda K, et al. (1998). Decoy Administration of NF-kappaB into the subarachnoid space for cerebral angiopathy. Hum Gene Ther 9:1003–11.
  • Panahi Y, Darvishi B, Ghanei M, et al. (2016). Molecular mechanisms of curcumins suppressing effects on tumorigenesis, angiogenesis and metastasis, focusing on NF-κB pathway. Cytokine Growth Factor Rev 28:21–9.
  • Panyam J, Labhasetwar V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–47.
  • Park MH, Hong JT. (2016). Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells 5:15.
  • Pfeffer SR. (2011). Entry at the trans-face of the Golgi. Cold Spring Harbor Perspect Biol 3:a005272.
  • Prabaharan M, Mano J. (2004). Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57.
  • Prado CM, Martins MA, Tibério IF. (2011). Nitric oxide in asthma physiopathology. ISRN Allergy 2011:832560.
  • Ricciotti E, FitzGerald GA. (2011). Prostaglandins and inflammation. Arteriosclerosis Thrombosis Vascular Biol 31:986–1000.
  • Rosi NL, Giljohann DA, Thaxton CS, et al. (2006). Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–30.
  • Schwartz S L, Cao C, Pylypenko O, et al. (2007). Rab GTPases at a glance. J Cell Sci 120:3905–10.
  • Serikawa T, Kikuchi H, Oite T, et al. (2008). Enhancement of gene expression efficiency using cationic liposomes on ovarian cancer cells. Drug Deliv 15:523–9.
  • Son G, Iimuro Y, Seki E, et al. (2007). Selective inactivation of NF-κB in the liver using NF-κB decoy suppresses CCl4-induced liver injury and fibrosis. Am J Physiol 293:G631–9.
  • Stenmark H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–25.
  • Sugao Y, Watanabe K, Higuchi Y, et al. (2009). NFκB decoy delivery using dendritic poly (l-lysine) for treatment of endotoxin-induced hepatitis in mice. Bioorg Med Chem 17:4990–5.
  • Sun S-C. (2011). Non-canonical NF-κB signaling pathway. Cell Res 21:71–85.
  • Tahara K, Sakai T, Yamamoto H, et al. (2009). Improved cellular uptake of chitosan-modified PLGA nanospheres by A549 cells. Int J Pharm 382:198–204.
  • Tahara K, Samura S, Tsuji K, et al. (2011). Oral nuclear factor-κB decoy oligonucleotides delivery system with chitosan modified poly (D, L-lactide-co-glycolide) nanospheres for inflammatory bowel disease. Biomaterials 32:870–8.
  • Tan Y, Zhang J-S, Huang L. (2002). Codelivery of NF-κB decoy-related oligodeoxynucleotide improves LPD-mediated systemic gene transfer. Mol Ther 6:804–12.
  • Tas SW, Vervoordeldonk MJ, Tak PP. (2009). Gene therapy targeting nuclear factor-κB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 9:160–70.
  • Tilley SL, Coffman TM, Koller BH. (2001). Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest 108:15–23.
  • Tomita N, Morishita R, Tomita S, et al. (2000). Transcription factor decoy for NF [kappa] B inhibits TNF-[alpha]-induced cytokine and adhesion molecule expression in vivo. Gene Ther 7:1326.
  • Tomita T, Takano H, Tomita N, et al. (2000). Transcription factor decoy for NFκB inhibits cytokine and adhesion molecule expressions in synovial cells derived from rheumatoid arthritis. Rheumatology 39:749–57.
  • Tomita T, Takeuchi E, Tomita N, et al. (1999). Suppressed severity of collagen‐induced arthritis by in vivo transfection of nuclear factor κB decoy oligodeoxynucleotides as a gene therapy. Arthritis Rheumatism 42:2532–42.
  • Vighi E, Montanari M, Ruozi B, et al. (2012). The role of protamine amount in the transfection performance of cationic SLN designed as a gene nanocarrier. Drug Deliv 19:1–10.
  • von Harpe A, Petersen H, Li Y, et al. (2000). Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release 69:309–22.
  • Vos IH, Govers R, Grone H-J, et al. (2000). NFκB decoy oligodeoxynucleotides reduce monocyte infiltration in renal allografts. FASEB J 14:815–22.
  • Wang Y, Miao L, Satterlee A, et al. (2015). Delivery of oligonucleotides with lipid nanoparticles. Adv Drug Deliv Rev 87:68–80.
  • Wang M, Wu B, Tucker JD, et al. (2016). Poly(ester amine) constructed from polyethylenimine and pluronic for gene delivery in vitro and in vivo. Drug Deliv 23:3224–33.
  • Wardwell PR, Bader RA. (2015). Immunomodulation of cystic fibrosis epithelial cells via NF‐κB decoy oligonucleotide‐coated polysaccharide nanoparticles. J Biomed Mater Res 103:1622–31.
  • Wardwell P.R, Forstner M.B, Bader R.A. (2015). Investigation of the cytokine response to NF-κB decoy oligonucleotide coated polysaccharide based nanoparticles in rheumatoid arthritis in vitro models. Arthritis Res Ther 17:310.
  • Wijagkanalan W, Kawakami S, Higuchi Y, et al. (2011). Intratracheally instilled mannosylated cationic liposome/NFκB decoy complexes for effective prevention of LPS-induced lung inflammation. J Control Release 149:42–50.
  • Wong JK, Mohseni R, Hamidieh AA, et al. (2017). Will nanotechnology bring new hope for gene delivery? Trends Biotechnol. 35:434–451.
  • Xia Y, Shen S, Verma I.M. (2014). NF-κB, an active player in human cancers. Cancer Immunol Res 2:823–30.
  • Yach D, Hawkes C, Gould CL, et al. (2004). The global burden of chronic diseases: overcoming impediments to prevention and control. JAMA 291:2616–22.
  • Zaki Ahmad M, Akhter S, Mallik N, et al. (2013). Application of decoy oligonucleotides as novel therapeutic strategy: a contemporary overview. Curr Drug Discov Technol 10:71–84.
  • Zelphati O, Szoka FC. (1996a). Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm Res 13:1367–72.
  • Zelphati O, Szoka FC. (1996b). Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci USA 93:11493–8.
  • Zelphati O, Uyechi L S, Barron L G, et al. (1998). Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochimica Et Biophysica Acta (BBA) 1390:119–33.