3,299
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Ascorbyl palmitate-incorporated paclitaxel-loaded composite nanoparticles for synergistic anti-tumoral therapy

, , , , , , & show all
Pages 1230-1242 | Received 01 Jul 2017, Accepted 19 Aug 2017, Published online: 31 Aug 2017

References

  • Austria R, Semenzato A, Bettero A. (1997). Stability of vitamin C derivatives in solution and topical formulations. J Pharm Biomed Anal 15:795–801.
  • Banks WA, Kastin AJ. (1985). Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain Res Bull 15:287–92.
  • Cameron E, Campbell A. (1974). The orthomolecular treatment of cancer. II. Clinical trial of high-dose ascorbic acid supplements in advanced human cancer. Chemico-Biol Interact 9:285–315.
  • Cameron E, Pauling L. (1976). Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA 73:3685–9.
  • Cao X, Luo J, Gong T, et al. (2015). Coencapsulated doxorubicin and bromotetrandrine lipid nanoemulsions in reversing multidrug resistance in breast cancer in vitro and in vivo. Mol Pharm 12:274–86.
  • Chen Q, Espey MG, Sun AY, et al. (2008). Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA 105:11105–9.
  • Chen Y, Zhu X, Zhang X, et al. (2010). Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18:1650–6.
  • Cory S, Adams JM. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–56.
  • Creagan ET, Moertel CG, O’Fallon JR, et al. (1979). Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. The. N Engl J Med 301:687–90.
  • D’Souza GG, Wang T, Rockwell K, Torchilin VP. (2008). Surface modification of pharmaceutical nanocarriers with ascorbate residues improves their tumor-cell association and killing and the cytotoxic action of encapsulated paclitaxel in vitro. Pharm Res 25:2567–72.
  • Du J, Martin SM, Levine M, et al. (2010). Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer. Clin Cancer Res 16:509–20.
  • Espey MG, Chen P, Chalmers B, et al. (2011). Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. Free Radical Biol Med 50:1610–9.
  • Guney G, Kutlu HM, Genc L. (2014). Preparation and characterization of ascorbic acid loaded solid lipid nanoparticles and investigation of their apoptotic effects. Colloids Surf B Biointerfaces 121:270–80.
  • Guo D, Dou D, Li X, et al. (2017). Ivermection-loaded solid lipid nanoparticles: preparation, characterisation, stability and transdermal behaviour. Artificial Cells Nanomed Biotechnol. DOI: 10.1080/21691401.2017.1307207.
  • Ha YM, Park MK, Kim HJ, et al. (2009). High concentrations of ascorbic acid induces apoptosis of human gastric cancer cell by p38-MAP kinase-dependent up-regulation of transferrin receptor. Cancer Lett 277:48–54.
  • Hardaway CM, Badisa RB, Soliman KF. (2012). Effect of ascorbic acid and hydrogen peroxide on mouse neuroblastoma cells. Mol Med Rep 5:1449–52.
  • He C, Liu D, Lin W. (2015). Self-assembled nanoscale coordination polymers carrying siRNAs and cisplatin for effective treatment of resistant ovarian cancer. Biomaterials 36:124–33.
  • Jun HS, Park T, Lee CK, et al. (2007). Capsaicin induced apoptosis of B16-F10 melanoma cells through down-regulation of Bcl-2. Food Chem Toxicol 45:708–15.
  • Kang JS, Cho D, Kim YI, et al. (2003). L-ascorbic acid (vitamin C) induces the apoptosis of B16 murine melanoma cells via a caspase-8-independent pathway. Cancer Immunol Immunother 52:693–8.
  • Knipling L, Wolff J. (2006). Direct interaction of Bcl-2 proteins with tubulin. Biochem Biophys Res Commun 341:433–9.
  • Kristl J, Volk B, Gasperlin M, Sentjurc M, Jurkovic P. (2003). Effect of colloidal carriers on ascorbyl palmitate stability. Eur J Pharm Sci 19:181–9.
  • Lee KM, Kwon JY, Lee KW, Lee HJ. (2009). Ascorbic acid 6-palmitate suppresses gap-junctional intercellular communication through phosphorylation of connexin 43 via activation of the MEK-ERK pathway. Mutat Res 660:51–6.
  • Lin ZY, Chuang WL. (2010). Pharmacologic concentrations of ascorbic acid cause diverse influence on differential expressions of angiogenic chemokine genes in different hepatocellular carcinoma cell lines. Biomed Pharmacother 64:348–51.
  • Lv S, Tang Z, Li M, et al. (2014). Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials 35:6118–29.
  • Maeda H, Nakamura H, Fang J. (2013). The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–9.
  • Mc CW. (1959). Cancer: a collagen disease, secondary to a nutritional deficiency. Arch Pediatr 76:166–71.
  • Miles SL, Fischer AP, Joshi SJ, et al. (2015). Ascorbic acid and ascorbate-2-phosphate decrease HIF activity and malignant properties of human melanoma cells. BMC Cancer 15:867.
  • Miwa N, Yamazaki H, Nagaoka Y, et al. (1988). Altered production of the active oxygen species is involved in enhanced cytotoxic action of acylated derivatives of ascorbate to tumor cells. Biochimica Et Biophysica Acta 972:144–51.
  • Moertel CG, Fleming TR, Creagan ET, et al. (1985). High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N Engl J Med 312:137–41.
  • Muller RH, Mader K, Gohla S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50:161–77.
  • Naidu KA. 2003a. Ascorbyl esters for the treatment of cancer. United States Patent. 6638974.
  • Naidu KA. (2003b). Vitamin C in human health and disease is still a mystery? An overview. Nutr J 2:7.
  • Ohno S, Ohno Y, Suzuki N, et al. (2009). High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer. Anticancer Res 29:809–15.
  • Padayatty SJ, Sun H, Wang Y, et al. (2004). Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med 140:533–7.
  • Pathi SS, Lei P, Sreevalsan S, et al. (2011). Pharmacologic doses of ascorbic acid repress specificity protein (Sp) transcription factors and Sp-regulated genes in colon cancer cells. Nutr Cancer 63:1133–42.
  • Perrin C, Meyer L. (2003). Simultaneous determination of ascorbyl palmitate and nine phenolic antioxidants in vegetable oils and edible fats by HPLC. J Amer Oil Chem Soc 80:115–8.
  • Pollard HB, Levine MA, Eidelman O, Pollard M. (2010). Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer. In Vivo 24:249–55.
  • Qu J, Zhang L, Chen Z, et al. (2016). Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy? Drug Deliv 23:3408–16.
  • Sawant RR, Vaze O, D’Souza GG, et al. (2011). Palmitoyl ascorbate-loaded polymeric micelles: cancer cell targeting and cytotoxicity. Pharm Res 28:301–8.
  • Shen J, Yin Q, Chen L, et al. (2012). Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 33:8613–24.
  • Shi F, Zhao JH, Liu Y, et al. (2012). Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int J Nanomed 7:2033–43.
  • Silva AC, Gonzalez-Mira E, Garcia ML, et al. (2011). Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf B Biointerfaces 86:158–65.
  • Takemura Y, Satoh M, Satoh K, et al. (2010). High dose of ascorbic acid induces cell death in mesothelioma cells. Biochem Biophys Res Commun 394:249–53.
  • Verrax J, Calderon PB. (2009). Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radical Biol Med 47:32–40.
  • Wang B, Yu XC, Xu SF, et al. (2015a). Paclitaxel and etoposide co-loaded polymeric nanoparticles for the effective combination therapy against human osteosarcoma. J Nanobiotechnol 13:22.
  • Wang H, Zhao Y, Wu Y, et al. (2011). Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 32:8281–90.
  • Wang J, Wang H, Zhu R, et al. (2015b). Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1beta transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 53:475–83.
  • Wang W, Xi M, Duan X, et al. (2015c). Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo. Int J Nanomed 10:3737–50.
  • Xin H, Chen L, Gu J, et al. (2010). Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(varepsilon-caprolactone) nanoparticles: in vitro and in vivo evaluation. Int J Pharm 402:238–47.
  • Yip KW, Reed JC. (2008). Bcl-2 family proteins and cancer. Oncogene 27:6398–406.
  • Yoksan R, Jirawutthiwongchai J, Arpo K. (2010). Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids Surf B Biointerfaces 76:292–7.
  • Zhang P, Hu L, Wang Y, et al. (2010). Poly(epsilon-caprolactone)-block-poly(ethyl ethylene phosphate) micelles for brain-targeting drug delivery: in vitro and in vivo valuation. Pharm Res 27:2657–69.