6,773
Views
60
CrossRef citations to date
0
Altmetric
Review Article

Development of DNA tetrahedron-based drug delivery system

, , , , , & show all
Pages 1295-1301 | Received 25 Jul 2017, Accepted 25 Aug 2017, Published online: 11 Sep 2017

References

  • Aderem A, Underhill DM. (1999). Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623.
  • Andersen FF, Knudsen B, Oliveira CL, et al. (2008). Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic Acids Res 36:1113–19.
  • Bai L, Chen W, Chen JT, et al. (2017). Heterogeneity of Toll-like receptor 9 signaling in B cell malignancies and its potential therapeutic application. J Transl Med 15:51.
  • Bhatia D, Surana S, Chakraborty S, et al. (2011). A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat Commun 2:339.
  • Busija AR, Patel HH, Insel PA. (2017). Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. Am J Physiol Cell Physiol 312:C459–C77.
  • Charoenphol P, Bermudez H. (2014). Aptamer-targeted DNA nanostructures for therapeutic delivery. Mol Pharmaceut 11:1721–5.
  • Chen JH, Seeman NC. (1991). Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–3.
  • Conway JW, McLaughlin CK, Castor KJ, et al. (2013). DNA nanostructure serum stability: greater than the sum of its parts. Chem Commun 49:1172–4.
  • Dai BD, Hu Y, Duan JH, et al. (2016). Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget 7:38257–69.
  • Dowdy SF. (2017). Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 35:222–9.
  • Fakhoury JJ, McLaughlin CK, Edwardson TW, et al. (2014). Development and characterization of gene silencing DNA cages. Biomacromolecules 15:276–82.
  • Goodman RP, Berry RM, Turberfield AJ. (2004). The single-step synthesis of a DNA tetrahedron. Chem Commun 12:1372–3.
  • Goodman RP, Schaap IA, Tardin CF, et al. (2005). Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–5.
  • Gratton SEA, Ropp PA, Pohlhaus PD, et al. (2008). The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105:11613–18.
  • Hillaireau H, Couvreur P. (2009). Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–96.
  • Hu CMJ, Fang RH, Wang KC, et al. (2015). Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–21.
  • Kang JK, Kim KR, Lee H, et al. (2017). In vitro and in vivo behavior of DNA tetrahedrons as tumor-targeting nanocarriers for doxorubicin delivery. Colloids Surf B Biointerfaces 157:424–31.
  • Kerr MC, Teasdale RD. (2009). Defining macropinocytosis. Traffic 10:364–71.
  • Keum JW, Ahn JH, Bermudez H. (2011). Design, assembly, and activity of antisense DNA nanostructures. Small 7:3529–35.
  • Kim KR, Bang D, Ahn DR. (2016). Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy. Biomater Sci-UK 4:605–9.
  • Kim KR, Kim DR, Lee T, et al. (2013). Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem Commun 49:2010–12.
  • Kim KR, Kim HY, Lee YD, et al. (2016). Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. J Control Release 243:121–31.
  • Kim KR, Lee T, Kim BS, et al. (2014). Utilizing the bioorthogonal base-pairing system of L-DNA to design ideal DNA nanocarriers for enhanced delivery of nucleic acid cargos. Chem Sci 5:1533–7.
  • Kiviaho JK, Linko V, Ora A, et al. (2016). Cationic polymers for DNA origami coating – examining their binding efficiency and tuning the enzymatic reaction rates. Nanoscale 8:11674–80.
  • Lee DS, Qian H, Tay CY, et al. (2016). Cellular processing and destinies of artificial DNA nanostructures. Chem Soc Rev 45:4199–225.
  • Lee H, Lytton-Jean AK, Chen Y, et al. (2012). Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–93.
  • Li J, Pei H, Zhu B, et al. (2011). Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5:8783–9.
  • Liang L, Li J, Li Q, et al. (2014). Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew Chem Int Edit 53:7745–50.
  • Linko V, Ora A, Kostiainen MA. (2015). DNA nanostructures as smart drug-delivery vehicles and molecular devices. Trends Biotechnol 33:586–94.
  • Ma D. (2014). Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale 6:6415–25.
  • Mei Q, Wei X, Su F, et al. (2011). Stability of DNA origami nanoarrays in cell lysate. Nano Lett 11:1477–82.
  • Mikkila J, Eskelinen AP, Niemela EH, et al. (2014). Virus-encapsulated DNA origami nanostructures for cellular delivery. Nano Lett 14:2196–200.
  • Ohtsuki S, Matsuzaki N, Mohri K, et al. (2015). Optimal arrangement of four short DNA strands for delivery of immunostimulatory nucleic acids to immune cells. Nucleic Acid Ther 25:245–53.
  • Perrault SD, Shih WM. (2014). Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8:5132–40.
  • Readman JB, Dickson G, Coldham NG. (2017). Tetrahedral DNA nanoparticle vector for intracellular delivery of targeted peptide nucleic acid antisense agents to restore antibiotic sensitivity in cefotaxime-resistant Escherichia coli. Nucleic Acid Ther 27:176–81.
  • Ren K, Liu Y, Wu J, et al. (2016). A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat Commun 7:13580.
  • Rothemund PW. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302.
  • Sabharanjak S, Sharma P, Parton RG, et al. (2002). GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2:411–23.
  • Setyawati MI, Kutty RV, Tay CY, et al. (2014). Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces 6:21822–31.
  • Stephenson ML, Zamecnik PC. (1978). Inhibition of Rous sarcoma viral RNA translation by a specifc oligodeoxyribonucleotide. Proc Natl Acad Sci USA 75:285–8.
  • Strømhaug P, Berg T, Seglen P. (1997). Endocytosis. Biol Blood Marrow Transplant 78:39–28.
  • Strømhaug PE, Berg TO, Gjøen T, et al. (1997). Differences between fluid-phase endocytosis (pinocytosis) and receptor-mediated endocytosis in isolated rat hepatocytes. Eur J Cell Biol 73:28–39.
  • Sun PC, Zhang N, Tang YF, et al. (2017). SL2B aptamer and folic acid dual-targeting DNA nanostructures for synergic biological effect with chemotherapy to combat colorectal cancer. Int J Nanomed 12:2657–72.
  • Tay CY, Yuan L, Leong DT. (2015). Nature-inspired DNA nanosensor for real-time in situ detection of mRNA in living cells. ACS Nano 9:5609–17.
  • Varkouhi AK, Scholte M, Storm G, et al. (2011). Endosomal escape pathways for delivery of biologicals. J Control Release 151:220–8.
  • Vonarbourg A, Passirani C, Saulnier P, et al. (2006). Evaluation of PEGylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A 78:620–8.
  • Walsh AS, Yin H, Erben CM, et al. (2011). DNA cage delivery to mammalian cells. ACS Nano 5:5427–32.
  • Wang X, Wang S, Zhang Y. (2016). Advance of the application of nano-controlled release system in ophthalmic drug delivery. Drug Deliv 23:2897–901.
  • Wang YM, You ZC, Du J, et al. (2016). Self-assembled triangular DNA nanoparticles are an efficient system for gene delivery. J Control Release 233:126–35.
  • Xia ZW, Wang P, Liu XW, et al. (2016). Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery. Biochemistry 55:1326–31.
  • Zhang Y, Jiang S, Zhang D, et al. (2017). DNA-affibody nanoparticles for inhibiting breast cancer cells overexpressing HER2. Chem Commun 53:573–6.