3,633
Views
36
CrossRef citations to date
0
Altmetric
Research Article

Brain targeted oral delivery of doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles against ketamine induced psychosis: behavioral, biochemical, neurochemical and histological alterations in mice

, , , , &
Pages 1429-1440 | Received 14 Jul 2017, Accepted 05 Sep 2017, Published online: 25 Sep 2017

References

  • Angelakis E, Armstrong N, Nappez C, et al. (2015). Doxycycline assay hair samples for testing long-term compliance treatment. J Infect 71:511–7.
  • Antonio RC, Ceron CS, Rizzi E, et al. (2014). Antioxidant effect of doxycycline decreases MMP activity and blood pressure in SHR. Mol Cell Biochem 386:99–105.
  • Arakawa S, Shirayama Y, Fujita Y, et al. (2012). Minocycline produced antidepressant-like effects on the learned helplessness rats with alterations in levels of monoamine in the amygdala and no changes in BDNF levels in the hippocampus at baseline. Pharmacol Biochem Behav 100:601–6.
  • Chatterjee M, Verma R, Ganguly S, Palit G. (2012). Neurochemical and molecular characterization of ketamine-induced experimental psychosis model in mice. Neuropharmacol 63:1161–71.
  • Chatterjee M, Verma P, Maurya R, Palit G. (2011). Evaluation of ethanol leaf extract of ocimum sanctum in experimental models of anxiety and depression. Pharm Biol 49:477–83.
  • Chillar R, Dhingra D. (2013). Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress. Fundam Clin Pharmacol 27:409–18.
  • Cho Y, Son HJ, Kim EM, et al. (2009). Doxycycline is neuroprotective against nigral dopaminergic degeneration by a dual mechanism involving MMP-3. Neurotox Res 16:361–71.
  • Corti O, Sanchez-Capelo A, Colin P, et al. (1999). Long-term doxycycline-controlled expression of human tyrosine hydroxylase after direct adenovirus-mediated gene transfer to a rat model of Parkinson’s disease. Proc Natl Acad Sci U S A 96:12120–5.
  • Costa P, Lobo JM. (2001). Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–33.
  • da Silva FCC, de Oliveira Cito MDC, da Silva MIG, et al. (2010). Behavioural alterations and pro-oxidant effect of a single ketamine administration to mice. Brain Res Bull 83:9–15.
  • Ellman GL. (1959). Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–7.
  • Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. (2015). Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimr’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104:3544–56.
  • Fazil M, Md S, Haque S, et al. (2012). Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 47:6–15.
  • Frye LJ, Chong E, Winikoff B. NCT01799252 Trial Investigators. (2015). What happens when we routinely give doxycycline to medical abortion patients? Contraception 91:19–24.
  • Guo F, Zhang M, Gao Y, et al. (2016). Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation. Drug Deliv 23:2003–14.
  • Hansraj GP, Singh SK, Kumar P. (2015). Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int J Biol Macromol 81:467–76.
  • Hunter R. (2014). Developing tomorrow’s antipsychotics: the need for a more personalised approach. Adv Psychiatr Treat 20:3–12.
  • Kandi P, Hayslett RL. (2011). Nicotine and 17β-estradiol produce an antidepressant-like effect in female ovariectomized rats. Brain Res Bull 84:224–8.
  • Kellendonk C, Simpson EH, Polan HJ, et al. (2006). Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603–15.
  • Kreuter J. (2001). Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81.
  • Kreuter J. (2002). Transport of drugs across the blood-brain barrier by nanoparticles. Curr Med Chem Cent Nerv Syst Agents 2:241–9.
  • Kumar A, Yadav M, Parle P, et al. (2017). Potential drug targets and treatment of schizophrenia. Inflammopharmacology 25:277–92.
  • Lowe IP, Robins E, Eyerman GS. (1958). The fluorimetric measurement of glutamic, decarboxylase measurement and its distributionin brain. J Neurochem 3:8–18.
  • Mandala Rayabandla SK, Aithal K, Anandam A, et al. (2010). Preparation, in vitro characterization, pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma. Drug Deliv 17:103–13.
  • Nagpal K, Singh SK, Mishra DN. (2013). Evaluation of safety and efficacy of brain targeted chitosan nanoparticles of minocycline. Int J Biol Macromol 59:20–8.
  • Omolu A, Bailly M, Day RM. (2017). Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity. Drug Deliv 24:942–51.
  • Pae CU, Marks DM, Han C, Patkar AA. (2008). Does minocycline have antidepressant effect? Biomed Pharmacother 62:308–11.
  • Rao NP, Remington G. (2013). Investigational drugs for schizophrenia targeting the dopamine receptor: phase II trials. Expert Opin Investig Drugs 22:881–94.
  • Sarısozen C, Arıca B, Orman MN, et al. (2010). Optimization of prednisolone acetate-loaded chitosan microspheres using a 2(3) factorial design for preventing restenosis. Drug Deliv 17:178–86.
  • Sarvaiya J, Agrawal YK. (2015). Chitosan as a suitable nanocarrier material foranti-Alzheimer drug delivery. Int J Biol Macromol 72:454–65.
  • Schlumpf M, Lichtensteiger W, Langemann H, et al. (1974). A fluorimetricmicromethod for the simultaneous determination of serotonin, noradrenaline and dopamine in milligram amount of brain tissue. Biochem Pharmacol 23:2437–46.
  • Soni K, Parle M. (2017). Trachyspermum ammi seeds supplementation helps reverse scopolamine, alprazolam and electroshock induced amnesia. Neurochem Res 42:1333–44.
  • Tilakaratne A, Soory M. (2014). Antioxidant response of osteoblasts to doxycycline in an inflammatory model induced by C-reactive protein and interleukin-6. Infect Disord Drug Targets 14:14–22.
  • Wills ED. (1964). The effect of inorganic iron on the thiobarbituric acid method for the determination of lipid peroxides. Biochim Biophys Acta 84:475–7.
  • Yadav M, Jindal DK, Dhingra MS, et al. (2017). Protective effect of gallic acid in experimental model of ketamine-induced psychosis: possible behaviour, biochemical, neurochemical and cellular alterations. Inflammopharmacology. doi:10.1007/s10787-017-0366-8
  • Zugno AI, Chipindo HL, Volpato AM, et al. (2014). Omega-3 prevents behaviour response and brain oxidative damage in the ketamine model of schizophrenia. Neurosci 259:223–31.