4,606
Views
46
CrossRef citations to date
0
Altmetric
Research Article

Insulin-loaded PLGA microspheres for glucose-responsive release

, , , , &
Pages 1513-1525 | Received 03 Aug 2017, Accepted 14 Sep 2017, Published online: 04 Oct 2017

References

  • Abulateefeh SR, Alkilany AM. (2016). Synthesis and characterization of PLGA shell microcapsules containing aqueous cores prepared by internal phase separation. AAPS Pharm Sci Tech 17:891–7.
  • Alcalá-Alcalá S, Benítez-Cardoza CG, Lima-Muñoz EJ, et al. (2015). Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies. Int J Pharm 489:139–47.
  • Aly HM, El-Mohdy HA. (2016). Functional modification of poly vinyl alcohol/acrylic acid hydrogels prepared by γ-radiation through some amine compounds. Arab J Sci Eng 41:2199–209.
  • American Diabetes Association. (2014). Standards of medical care in diabetes-2014. Diabetes Care 37:S14–S80.
  • Aminabhavi TM, Nadagouda MN, More UA, et al. (2015). Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin Drug Del 12:669–88.
  • Anselmo AC, Mitragotri S. (2014). An overview of clinical and commercial impact of drug delivery systems. J Control Release 190:15–28.
  • Aoki T, Nagao Y, Sanui K, et al. (1996). Phenylboronic acid moieties. Polym J 28:371–4.
  • Ariga K, Yamauchi Y, Rydzek G, et al. (2013). Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett 43:36–68.
  • Asoh TA, Takaishi K, Kikuchi A. (2015). Adhesion of poly (vinyl alcohol) hydrogels by the electrophoretic manipulation of phenylboronic acid copolymers. J Mater Chem B 3:6740–5.
  • Bianco A. (2013). Graphene: safe or toxic? The two faces of the medal. Angew Chem Int Ed Engl 52:4986–97.
  • Borges J, Mano JF. (2014). Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev 114:8883–42.
  • Chai F, Sun L, He X, et al. (2017). Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications. Int J Nanomed 12:1791–802.
  • Deng ZJ, Morton SW, Ben-Akiva E, et al. (2013). Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 7:9571–84.
  • Dhall S, Silva JP, Liu Y, et al. (2015). Release of insulin from PLGA-alginate dressing stimulates regenerative healing of burn wounds in rats. Clin Sci 129:1115–29.
  • Di J, Price J, Gu X, et al. (2014). Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv Healthc Mater 3:811–6.
  • Dong Y, Wang W, Veiseh O, et al. (2016). Injectable and glucose-responsive hydrogels based on boronic acid-glucose complexation. Langmuir 32:8743–7.
  • Fang J, Zhang Y, Yan S, et al. (2014). Poly(L-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration . Acta Biomater 10:276–88.
  • Go DP, Palmer JA, Mitchell GM, et al. (2015). Porous PLGA microspheres tailored for dual delivery of biomolecules via layer-by-layer assembly. J Biomed Mater Res A 103:1849–63.
  • Guo W, Quan P, Fang L, et al. (2015). Sustained release donepezil loaded PLGA microspheres for injection: Preparation, in vitro and in vivo study. Asian J Pharm Sci 10:405–14.
  • Haggag Y, Abdel-Wahab Y, Ojo O, et al. (2016). Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Int J Pharm 499:236–46.
  • Hamishehkar H, Emami J, Najafabadi AR, et al. (2009). The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method. Colloids Surf B Biointerfaces 74:340–9.
  • Hanson MA, Gluckman PD. (2014). Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 94:1027–76.
  • Henry RR, Gumbiner B, Ditzler T, et al. (1993). Intensive conventional insulin therapy for type II diabetes. Metabolic effects during a 6-mo outpatient trial. Diabetes Care 16:21–31.
  • Hou J, Wang J, Sun E, et al. (2016). Preparation and evaluation of icariside ii-loaded binary mixed micelles using solutol HS15 and pluronic F127 as carriers. Drug Deliv 23:3248–56.
  • Hu M, Mi B. (2014). Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J Membrane Sci 469:80–7.
  • Huang Z, Yang W, Zong Y, et al. (2016). A study of the dexamethasone sodium phosphate release properties from a periocular capsular drug delivery system. Drug Deliv 23:839–47.
  • Janoria KG, Mitra AK. (2007). Effect of lactide/glycolide ratio on the in vitro release of ganciclovir and its lipophilic prodrug (gcv-monobutyrate) from plga microspheres. Int J Pharm 338:133–41.
  • Kozuka C, Shimizuokabe C, Takayama C, et al. (2017). Marked augmentation of plga nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv 24:558–68.
  • Lei L, Jiang G, Yu W, et al. (2016). A composite hydrogel system containing glucose-responsive nanocarriers for oral delivery of insulin. Mater Sci Eng C 69:37–45.
  • Licata A. (2016). Adverse drug reactions and organ damage: the liver. Eur J Intern Med 28:9–16.
  • Liu D, Jiang G, Yu W, et al. (2017). Oral delivery of insulin using caco3-based composite nanocarriers with hyaluronic acid coatings. Mater Lett 188:263–6.
  • Liu H, Shi S, Cao J, et al. (2015). Preparation and evaluation of a novel bioactive glass/lysozyme/PLGA composite microsphere. Drug Dev Ind Pharm 41:458–63.
  • Liu Y, Zhu J, Xu Y, et al. (2015). Boronic acid functionalized aza-Bodipy (azaBDPBA) based fluorescence optodes for the analysis of glucose in whole blood. Acs Appl Mater Interfaces 7:11141–5.
  • Luo J, Cao S, Chen X, et al. (2012). Super long-term glycemic control in diabetic rats by glucose-sensitive LbL films constructed of supramolecular insulin assembly. Biomaterials 33:8733–42.
  • Matsumoto A, Ishii T, Kataoka K, et al. (2013). Glucose-responsive gel for self-regulated insulin delivery system. Drug Deliv System 28:119–26.
  • Ma R, Shi L. (2014). Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem 5:1503–18.
  • Maulvi FA, Soni TG, Shah DO. (2016). A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv 23:3017–26.
  • Nie L, Zhang G, Hou R, et al. (2015). Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-β1 from porous PLGA microspheres. Colloid Surface B 125:51–7.
  • Nan K, Ma F, Hou H, et al. (2014). Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin. Acta Biomater 10:3505–12.
  • Nurpeissova ZA, Alimkhanova SG, Mangazbayeva RA, et al. (2015). Redox-and glucose-responsive hydrogels from poly (vinyl alcohol) and 4-mercaptophenylboronic acid. Eur Polym J 69:132–9.
  • Okoduwa SIR, Umar IA, James DB, et al. (2017). Appropriate insulin level in selecting fortified diet-fed, streptozotocin-treated rat model of type 2 diabetes for anti-diabetic studies. PloS One 12:e0170971.
  • Pickup J, Keen H. (2002). Continuous subcutaneous insulin infusion at 25years: evidence base for the expanding use of insulin pump therapy in type 1 diabetes. Diabetes Care 25:593–8.
  • Qi W, Yuan W, Yan J. (2015). The fabrication of glucose-sensitive insulin carriers with layer-by-layer assembly technique. J Control Release 213:e110.
  • Qi X, Yao X, Deng S, et al. (2014). Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. J Mater Chem A 2:2240–9.
  • Rafiei P, Haddadi A. (2017). Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomed 12:935–47.
  • Richardson JJ, Björnmalm M, Caruso F. (2015). Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science 348:aaa2491.
  • Rodríguez VJ, Bravo-Osuna I, Herrero-Vanrell R, et al. (2016). Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration. Eur J Pharm Sci 92:287–97.
  • Saini P, Greenspan P, Lu DR. (2015). Adsorption of brain proteins on the surface of poly (d,l-lactide-co-glycolide) (PLGA) microspheres. Drug Deliv 4:129–34.
  • Shi Y, Ma S, Tian R, et al. (2016). Manufacture, characterization, and release profiles of insulin-loaded mesoporous PLGA microspheres. Mater Manuf Process 31:1061–5.
  • Soni V, Singh R, Srinivasan R, et al. (2009). Insulin delivery through the ocular route. Drug Deliv 5:53–5.
  • Sood N, Bhardwaj A, Mehta S, et al. (2015). Development and characterization of glucose sensitive hydrogels for the treatment of diabetes mellit. Curr Drug Deliv 12:75–80.
  • Soriano-Ursúa MA, Farfán-García ED, López-Cabrera Y, et al. (2014). Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy. Neurotoxicology 40:8–15.
  • Talusan TJE, Baltazar MCP, Usman KAS, et al. (2017). Synthesis of glucose-sensitive microcapsules via layer-by-layer assembly for controlled insulin release applications. Appl Mech Mater 863:84–8.
  • Walker CH (1992). Biochemical responses as indicators of toxic effects of chemicals in ecosystems. Toxicol Lett Spec 527–33.
  • Wang C, Zhang K, Wang H, et al. (2015). Evaluation of biodegradability of poly (DL-lactic-co-glycolic acid) scaffolds for post-surgical adhesion prevention: in vitro, in rats and in pigs. Polymer 61:174–82.
  • Wang M, Feng Q, Niu X, et al. (2010). A spheres-in-sphere structure for improving protein-loading poly (lactide-co-glycolide) microspheres. Polym Degrad Stabil 95:6–13.
  • Wang W, Cai Y, Zhang G, et al. (2016). Sophoridine-loaded PLGA microspheres for lung targeting: preparation, in vitro, and in vivo evaluation. Drug Deliv 23:3674–80.
  • Winblade ND, Schmökel H, Baumann M, et al. (2002). Sterically blocking adhesion of cells to biological surfaces with a surface-active copolymer containing poly(ethylene glycol) and phenylboronic acid. J Biomed Mater Res 59:618–31.
  • Wu F, Li J, Su Y, et al. (2016a). Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performancelithium-sulfur batteries. Nano Lett 16:5488–94.
  • Wu JZ, Bremner DH, Li HY, et al. (2016b). Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery. Mater Sci Eng C Mater Biol Appl 69:1026–35.
  • Wu J, Williams GR, Branford-White C, et al. (2016c). Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation. Eur J Pharm Sci 92:28–38.
  • Wu JZ, Williams GR, Li HY, et al. (2017). Glucose- and temperature-sensitive nanoparticles for insulin delivery. Int J Nanomed 12:4037–57.
  • Xiao FX, Miao J, Liu B. (2014). Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J Am Chem Soc 136:1559–69.
  • Xiong ZC, Chen DL, Qing LI, et al. (2009). Preparaion of PLGA with different optical rotation and their crystallization behavior. Chinese J Org Chem 17:292–5.
  • Yan Y, Bjo¨rnmalm M, Caruso F. (2013). Assembly of layer-by-layer particles and their interactions with biological systems. Chem Mater 26:452–60.
  • Yang F, Chen D, Guo ZF, et al. (2017). The application of novel nano-thermal and imaging techniques for monitoring drug microstructure and distribution within PLGA microspheres. Int J Pharm 522:34–49.
  • Ying L, Xin W, Mi Y, et al. (2017). PLGA nanoparticles for the oral delivery of nuciferine: preparation, physicochemical characterization and in vitro/in vivo studies. Drug Deliv 24:443–51.
  • Yu F, Ao M, Zheng X, et al. (2017). Peg-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv 24:825–33.
  • Zhang B, Pan Y, Chen H, et al. (2017). Stabilization of starch-based microgel-lysozyme complexes using a layer-by-layer assembly technique. Food Chem 214:213–7.
  • Zhang L, Wang J, Chi H, et al. (2016a). Local anesthetic lidocaine delivery system: chitosan and hyaluronic acid-modified layer-by-layer lipid nanoparticles . Drug Deliv 23:3529–37.
  • Zhang Y, Wischke C, Mittal S, et al. (2016b). Design of controlled release PLGA microspheres for hydrophobic fenretinide. Mol Pharm 13:2622–30.
  • Zhang Z, Bi X, Li H, et al. (2011). Enhanced targeting efficiency of PLGA microspheres loaded with lornoxicam for intra-articular administration. Drug Deliv 18:536–44.
  • Zhao L, Huang Q, Liu Y, et al. (2017). Boronic acid as glucose-sensitive agent regulates drug delivery for diabetes treatment. Materials 10:170.
  • Zimmet PZ, Magliano DJ, Herman WH, et al. (2014). Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol 2:56–64.
  • Zhao J, Wang Z, White JC, et al. (2014). Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48:9995–10009.