3,955
Views
40
CrossRef citations to date
0
Altmetric
Review

Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways

, , , , , , , & show all
Pages 45-55 | Received 24 Aug 2017, Accepted 10 Oct 2017, Published online: 25 Oct 2017

References

  • Aderem A, Underhill DM. (1999). Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623.
  • Alexander LM, Pernagallo S, Livigni A, et al. (2010). Investigation of microsphere-mediated cellular delivery by chemical, microscopic and gene expression analysis. Mol Biosyst 6:399–409.
  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–15.
  • Alves ID, Goasdoue N, Correia I, et al. (2008). Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochim Biophys Acta. 1780:948–59.
  • An M, Wijesinghe D, Andreev OA, et al. (2010). pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation. Proc Natl Acad Sci USA. 107:20246–50.
  • Andreev OA, Engelman DM, Reshetnyak YK. (2009). Targeting acidic diseased tissue: new technology based on use of the pH (Low) insertion peptide (pHLIP). Chim Oggi 27:34–7.
  • Bao WL, Wang JY, Wang Q, et al. (2016). Layered double hydroxide nanotransporter for molecule delivery to intact plant cells. Sci Rep 6:26738.
  • Bechara C, Sagan S. (2013). Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587:1693–702.
  • Bolhassani A. (2011). Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochimi Biophys Acta 1816:232–46.
  • Bossi E, Zanella D, Gornati R, Bernardini G. (2016). Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes. Sci Rep 6:22254.
  • Champion JA, Mitragotri S. (2006). Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103:4930–4.
  • Cheng CJ, Bahal R, Babar IA, et al. (2015). MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518:107–10.
  • D'hondt K, Heese-Peck A, Riezman H. (2000). Protein and lipid requirements for endocytosis. Annu Rev Genet 34:255–95.
  • Derossi D, Calvet S, Trembleau A, et al. (1996). Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–93.
  • Derossi D, Chassaing G, Prochiantz A. (1998). Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8:84–7.
  • Derossi D, Joliot AH, Chassaing G, Prochiantz A. (1994). The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–50.
  • Deshayes S, Plenat T, Charner P, et al. (2006). Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochim Biophys Acta 1758:1846–51.
  • Ding Y, Wang YZ, Zhou JP, et al. (2014). Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis. Biomaterials 35:7214–27.
  • Doherty GJ, Mcmahon HT. (2009). Mechanisms of endocytosis. Annu Rev Biochem 78:857–902.
  • Dreaden EC, Alkilany AM, Huang X, et al. (2012). The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–79.
  • El-Andaloussi S, Jarver P, Johansson HJ, Langel U. (2007). Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study. Biochem J 407:285–92.
  • Ernsting MJ, Murakami M, Roy A, Li SD. (2013). Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 172:782–94.
  • Fretz MM, Penning NA, Al-Taei S, et al. (2007). Temperature-, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem J 403:335–42.
  • Gandhi NS, Tekade RK, Chougule MB. (2014). Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release 194:238–56.
  • Giljohann DA, Mirkin CA. (2009). Drivers of biodiagnostic development. Nature 462:461–4.
  • Gratton SEA, Ropp PA, Pohlhaus PD, et al. (2008). The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105:11613–8.
  • Green M, Ishino M, Loewenstein PM. (1989). Mutational analysis of HIV-1 Tat minimal domain peptides-identification of trans-dominant mutants that suppress HIV-LTR-driven gene-expression. Cell 58:215–23.
  • Grimmer S, Van Deurs B, Sandvig K. (2002). Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J Cell Sci 115:2953–62.
  • Gupta B, Levchenko TS, Torchilin VP. (2005). Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57:637–51.
  • Harush-Frenkel O, Altschuler Y, Benita S. (2008). Nanoparticle-cell interactions: drug delivery implications. Crit Rev Ther Drug Carrier Syst 25:485–544.
  • Hayer A, Stoeber M, Ritz D, et al. (2010). Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 191:615–29.
  • Herce HD, Garcia AE. (2007). Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc Natl Acad Sci USA 104:20805–10.
  • Herce HD, Garcia AE, Litt J, et al. (2009). Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophysical J 97:1917–25.
  • Heuser JE, Anderson RG. (1989). Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108:389–400.
  • Hewlett LJ, Prescott AR, Watts C. (1994). The coated pit and macropinocytic pathways serve distinct endosome populations. J Cell Biol 124:689–703.
  • Hillaireau H, Couvreur P. (2009). Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–96.
  • Hunt JF, Rath P, Rothschild KJ, Engelman DM. (1997). Spontaneous, pH-dependent membrane insertion of a transbilayer alpha-helix. Biochem 36:15177–92.
  • Iversen T-G, Skotland T, Sandvig K. (2011). Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–85.
  • Jahn R, Sudhof TC. (1999). Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911.
  • Jain RK, Stylianopoulos T. (2010). Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–64.
  • Jiang W, Kim BYS, Rutka JT, Chan WCW. (2008). Nanoparticle-mediated cellular response is size-dependent. Nature Nanotech 3:145–50.
  • Jiao CY, Delaroche D, Burlina F, et al. (2009). Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 284:33957–65.
  • Joanne P, Galanth C, Goasdoue N, et al. (2009). Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochim Biophys Acta 1788:1772–81.
  • Kaihatsu K, Janowski BA, Corey DR. (2004). Recognition of chromosomal DNA by PNAs. Chem Biol 11:749–58.
  • Kaplan IM, Wadia JS, Dowdy SF. (2005). Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 102:247–53.
  • Karabadzhak AG, Weerakkody D, Wijesinghe D, et al. (2012). Modulation of the pHLIP transmembrane helix insertion pathway. Biophys J 102:1846–55.
  • Kawamoto S, Takasu M, Miyakawa T, et al. (2011). Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group. J Chem Phys 134:095103.
  • Kerr MC, Teasdale RD. (2009). Defining macropinocytosis. Traffic 10:364–71.
  • Kiss AL, Botos E. (2009). Endocytosis via caveolae: alternative pathway with distinct cellular compartments to avoid lysosomal degradation? J Cell Mol Med 13:1228–37.
  • Kratz F, Warnecke A. (2012). Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. J Control Release 164:221–35.
  • Kumari S, Swetha MG, Mayor S. (2010). Endocytosis unplugged: multiple ways to enter the cell. Cell Res 20:256–75.
  • Lee MT, Hung WC, Chen FY, Huang HW. (2005). Many-body effect of antimicrobial peptides: on the correlation between lipid's spontaneous curvature and pore formation. Biophys J 89:4006–16.
  • Luzio JP, Parkinson MDJ, Gray SR, Bright NA. (2009). The delivery of endocytosed cargo to lysosomes. Biochm Soc Trans 37:1019–21.
  • Ma DX, Shi NQ, Qi XR. (2011). Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells. Int J Pharm 419:200–8.
  • Mailander V, Landfester K. (2009). Interaction of nanoparticles with cells. Biomacromolecules 10:2379–400.
  • Matsuzaki K, Yoneyama S, Murase O, Miyajima K. (1996). Transbilayer transport of ions and lipids coupled with mastoparan X translocation. Biochem 35:8450–6.
  • Mellman I. (1996). Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 12:575–625.
  • Mellman I, Fuchs R, Helenius A. (1986). Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700.
  • Mercer J, Helenius A. (2009). Virus entry by macropinocytosis. Nat Cell Biol 11:510–20.
  • Milletti F. (2012). Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17:850–60.
  • Mu QS, Hondow NS, Krzeminski L, et al. (2012). Mechanism of cellular uptake of genotoxic silica nanoparticles. Part Fibre Toxicol 9:29.
  • Musial-Siwek M, Karabadzhak A, Andreev OA, et al. (2010). Tuning the insertion properties of pHLIP. Biochim Biophys Acta 1798:1041–6.
  • Nichols B. (2003). Caveosomes and endocytosis of lipid rafts. J Cell Sci 116:4707–14.
  • Nielsen PE, Egholm M, Berg RH, Buchardt O. (1991). Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–500.
  • Pan R, Xu W, Ding Y, et al. (2016). Uptake mechanism and direct translocation of a new CPP for siRNA delivery. Mol Pharm 13:1366–74.
  • Parton RG, Del Pozo MA. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112.
  • Parton RG, Howes MT. (2010). Revisiting caveolin trafficking: the end of the caveosome. J Cell Biol 191:439–41.
  • Parton RG, Joggerst B, Simons K. (1994). Regulated internalization of caveolae. J Cell Biol 127:1199–215.
  • Pouny Y, Rapaport D, Mor A, et al. (1992). Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid-membranes. Biochem 31:12416–23.
  • Prestegard JH, Obrien MP. (1987). Membrane and vesicle fusion. Annu Rev Phys Chem 38:383–411.
  • Ray A, Norden B. (2000). Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14:1041–60.
  • Reshetnyak YK, Andreev OA, Lehnert U, Engelman DM. (2006). Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix. Proc Natl Acad Sci USA 103:6460–5.
  • Reshetnyak YK, Segala M, Andreev OA, Engelman DM. (2007). A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers. Biophys J 93:2363–72.
  • Riehemann K, Schneider SW, Luger TA, et al. (2009). Nanomedicine-challenge and perspectives. Angew Chem Int Ed 48:872–97.
  • Rodrigues M, De La Torre BG, Andreu D, Santos NC. (2013). Kinetic uptake profiles of cell penetrating peptides in lymphocytes and monocytes. Biochim Biophys Acta 1830:4554–63.
  • Rothbard JB, Jessop TC, Lewis RS, et al. (2004). Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc 126:9506–7.
  • Saalik P, Elmquist A, Hansen M, et al. (2004). Protein cargo delivery properties of cell-penetrating peptides. A comparative study. Bioconjugate Chem 15:1246–53.
  • Sarkar K, Kruhlak MJ, Erlandsen SL, Shaw S. (2005). Selective inhibition by rottlerin of macropinocytosis in monocyte-derived dendritic cells. Immunology 116:513–24.
  • Savic R, Eisenberg A, Maysinger D. (2006). Block copolymer micelles as delivery vehicles of hydrophobic drugs: micelle-cell interactions. J Drug Target 14:343–55.
  • Shi NQ, Qi XR, Xiang B, Zhang Y. (2014). A survey on ‘Trojan Horse’ peptides: opportunities, issues and controlled entry to ‘Troy’. J Control Release 194:53–70.
  • Skotland T, Iversen T, Torgersen M, Sandvig K. (2015). Cell-penetrating peptides: possibilities and challenges for drug delivery in vitro and in vivo. Molecules 20:13313–23.
  • Swanson JA. (2008). Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9:639–49.
  • Thevenin D, An M, Engelman DM. (2009). pHLIP-mediated translocation of membrane-impermeable molecules into cells. Chem Biol 16:754–62.
  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS. (2001). TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98:8786–91.
  • Underhill DM, Goodridge HS. (2012). Information processing during phagocytosis. Nat Rev Immunol 12:492–502.
  • Van Kerkhof P, Sachse M, Klumperman J, Strous GJ. (2001). Growth hormone receptor ubiquitination coincides with recruitment to clathrin-coated membrane domains. J Biol Chem 276:3778–84.
  • Verma A, Uzun O, Hu YH, et al. (2008). Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7:588–95.
  • Vives E, Brodin P, Lebleu B. (1997). A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–7.
  • Wender PA, Galliher WC, Goun EA, et al. (2008). The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60:452–72.
  • Wijesinghe D, Engelman DM, Andreev OA, Reshetnyak YK. (2011). Tuning a polar molecule for selective cytoplasmic delivery by a pH (Low) insertion peptide. Biochemistry 50:10215–22.
  • Wu CH, Chen YP, Wu SH, et al. (2013). Enhanced non-endocytotic uptake of mesoporous silica nanoparticles by shortening the peptide transporter arginine side chain. ACS Appl Mater Interfaces 5:12244–8.
  • Xiang SN, Tong HJ, Shi Q, et al. (2012). Uptake mechanisms of non-viral gene delivery. J Control Release 158:371–8.
  • Yang J, Bahreman A, Daudey G, et al. (2016). Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Cent Sci 2:621–30.
  • Zaro JL, Shen WC. (2003). Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochem Biophys Res Commun 307:241–7.
  • Zaro JL, Shen WC. (2005). Evidence that membrane transduction of oligoarginine does not require vesicle formation. Exp Cell Res 307:164–73.
  • Zhang Y, Li L, Han M, et al. (2015). Amphiphilic lipopeptide-mediated transport of insulin and cell membrane penetration mechanism. Molecules 20:21569–83.
  • Ziegler A. (2008). Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev 60:580–97.