2,224
Views
19
CrossRef citations to date
0
Altmetric
Review

Dendrimer-based contrast agents for PET imaging

, &
Pages 81-93 | Received 08 Aug 2017, Accepted 28 Oct 2017, Published online: 10 Nov 2017

References

  • Abou DS, Thorek DLJ, Ramos NN, et al. (2013). 89Zr-labeled paramagnetic octreotide-liposomes for PET-MR imaging of cancer. Pharm Res 30:878–88.
  • Allmeroth M, Moderegger D, Gündel D, et al. (2013). PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography. J Control Release 172:77–85.
  • Almutairi A, Rossin R, Shokeen M, et al. (2009). Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 106:685–90.
  • Bailey DL, Willowson KP. (2013). An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 54:83–9.
  • Banerjee SR, Pullambhatla M, Foss CA, et al. (2014). 64Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer. J Med Chem 57:2657–69.
  • Bao G, Mitragotri S, Tong S. (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–82.
  • Botsikas D, Kalovidouri A, Becker M, et al. (2016). Clinical utility of 18F-FDG-PET/MR for preoperative breast cancer staging. Eur Radiol 26:2297–307.
  • Cai H, An X, Cui J, et al. (2013). Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5:1722–31.
  • Chakravarty R, Goel S, Hong H, et al. (2015). Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine (Lond) 10:1233–46.
  • Chakravarty R, Hong H, Cai W. (2014). Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 11:3777–97.
  • Chen DL, Schiebler ML, Goo JM, et al. (2017). PET imaging approaches for inflammatory lung diseases: current concepts and future directions. Eur J Radiol 86:371–6.
  • Chen H, Niu G, Wu H, et al. (2016). Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics 6:78–92.
  • Chen K, Chen X. (2010). Design and development of molecular imaging probes. Curr Top Med Chem 10:1227–36.
  • Chen Q, Wang H, Liu H, et al. (2015). Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 87:3949–56.
  • Cheng Y, Zhao L, Li Y, et al. (2011). Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 40:2673–703.
  • Choi H, Lee Y-S, Hwang DW, et al. (2016). Translational radionanomedicine: a clinical perspective. Eur J Nanomed 8:71–8.
  • Conti M, Eriksson L. (2016). Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys 3:8.
  • Danad I, Raijmakers PG, Appelman YE, et al. (2013). Hybrid imaging using quantitative H215O PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med 54:55–63.
  • De Smet M, Langereis S, Van Den Bosch S, et al. (2013). SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound. J Control Release 169:82–90.
  • Decristoforo C. (2012). Gallium-68 – a new opportunity for PET available from a long shelf-life generator - automation and applications. Curr Radiopharm 5:212–20.
  • Devaraj NK, Keliher EJ, Thurber GM, et al. (2009). 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 20:397–401.
  • Dijkgraaf I, Yim C, Franssen GM, et al. (2011). PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging 38:128–37.
  • Dimitrakopoulou-Strauss A. (2015). PET-based molecular imaging in personalized oncology: potential of the assessment of therapeutic outcome. Future Oncol 11:1083–91.
  • Drzezga A, Souvatzoglou M, Eiber M, et al. (2012). First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53:845–55.
  • D'souza MM, Sharma R, Jaimini A, et al. (2014). 11C-MET PET/CT and advanced MRI in the evaluation of tumor recurrence in high-grade gliomas. Clin Nucl Med 39:791–8.
  • Elsabahy M, Heo GS, Lim SM, et al. (2015). Polymeric nanostructures for imaging and therapy. Chem Rev 115:10967–1011.
  • Emmetiere F, Irwin C, Viola-Villegas NT, et al. (2013). (18)F-labeled-bioorthogonal liposomes for in vivo targeting. Bioconjug Chem 24:1784–9.
  • Etrych T, Lucas H, Janoušková O, et al. (2016). Fluorescence optical imaging in anticancer drug delivery. J Control Release 226:168–81.
  • Fani M, André JP, Maecke HR. (2008). 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging 3:53–63.
  • Fischer G, Wängler B, Wängler C. (2014). Optimized solid phase-assisted synthesis of dendrons applicable as scaffolds for radiolabeled bioactive multivalent compounds intended for molecular imaging. Molecules 19:6952–74.
  • Ghai A, Singh B, Panwar Hazari P, et al. (2015). Radiolabeling optimization and characterization of 68Ga labeled DOTA–polyamido-amine dendrimer conjugate: animal biodistribution and PET imaging results. Appl Radiat Isotopes 105:40–6.
  • Ghobril C, Lamanna G, Kueny-Stotz M, et al. (2012). Dendrimers in nuclear medical imaging. New J Chem 36:310–23.
  • Gnanasegaran G, Ballinger JR. (2014). Molecular imaging agents for SPECT (and SPECT/CT). Eur J Nucl Med Mol Imaging 41:26–35.
  • Gomes CM, Abrunhosa AJ, Ramos P, et al. (2011). Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliv Rev 63:547–54.
  • Groheux D, Espié M, Giacchetti S, et al. (2013). Performance of FDG PET/CT in the clinical management of breast cancer. Radiology 266:388–405.
  • Hall LT, Struck AF, Perlman SB. (2010). Clinical molecular imaging with PET agents other than 18F-FDG. Curr Pharm Biotechnol 11:545–54.
  • Hamzah J, Kotamraju VR, Seo JW, et al. (2011). Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 108:7154–9.
  • Hanaoka H, Ohshima Y, Suzuki Y, et al. (2015). Development of a widely usable amino acid tracer: 76Br-α-methyl-phenylalanine for tumor PET imaging. J Nucl Med 56:791–7.
  • He X, Alves CS, Oliveira N, et al. (2015). RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. Colloids Surf B Biointerfaces 125:82–9.
  • Hellebust A, Richards-Kortum R. (2012). Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (Lond) 7:429–45.
  • Hess S, Hansson SH, Pedersen KT, et al. (2014). FDG-PET/CT in infectious and inflammatory diseases. PET Clin 9:497–519.
  • Hillner BE, Siegel BA, Hanna L, et al. (2015). 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the national oncologic PET registry. J Nucl Med 56:222–8.
  • Hori Y, Hirano Y, Koshino K, et al. (2014). Validity of using a 3-dimensional PET scanner during inhalation of 15O-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man. Phys Med Biol 59:5593–609.
  • Hou S, Choi J, Garcia MA, et al. (2016). Pretargeted positron emission tomography imaging that employs supramolecular nanoparticles with in vivo bioorthogonal chemistry. ACS Nano 10:1417–24.
  • Huang C, Tsourkas A. (2013). Gd-based macromolecules and nanoparticles as magnetic resonance contrast agents for molecular imaging. Curr Top Med Chem 13:411–21.
  • Huang L, Ao L, Wang W, et al. (2015). Multifunctional magnetic silica nanotubes for MR imaging and targeted drug delivery. Chem Commun (Camb) 51:3923–6.
  • Jagoda EM, Lang L, Bhadrasetty V, et al. (2012). Immuno-PET of the hepatocyte growth factor receptor met using the 1-armed antibody onartuzumab. J Nucl Med 53:1592–600.
  • James ML, Gambhir SS. (2012). A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965.
  • Jødal L, Loirec CL, Champion C. (2014). Positron range in PET imaging: non-conventional isotopes. Phys Med Biol 59:7419–934.
  • Karmani L, Bouchat V, Bouzin C, et al. (2014). 89Zr-labeled anti-endoglin antibody-targeted gold nanoparticles for imaging cancer: implications for future cancer therapy. Nanomedicine (Lond) 9:1923–37.
  • Kikuchi M, Nakamoto Y, Shinohara S, et al. (2013). Early evaluation of neoadjuvant chemotherapy response using FDG-PET/CT predicts survival prognosis in patients with head and neck squamous cell carcinoma. Int J Clin Oncol 18:402–10.
  • Kim DY, Kim HS, Reder S, et al. (2015). Comparison of 18F-labeled fluoroalkylphosphonium cations with 13N-NH3 for PET myocardial perfusion imaging. J Nucl Med 56:1581–6.
  • Kobayashi H, Kawamoto S, Jo S, et al. (2003). Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem 14:388–94.
  • Kunjachan S, Ehling J, Storm G, et al. (2015). Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115:10907–37.
  • Kurihara H, Honda N, Kono Y, et al. (2012). Radiolabelled agents for PET imaging of tumor hypoxia. Curr Med Chem 19:3282–9.
  • Laforest R, Woodard PK, Gropler RJ. (2016). Cardiovascular PET/MRI: challenges and opportunities. Cardiol Clin 34:25–35.
  • Lahooti A, Sarkar S, Laurent S, et al. (2016). Dual nano-sized contrast agents in PET/MRI: a systematic review. Contrast Media Mol Imaging 11:428–47.
  • Lau JMC, Laforest R, Sotoudeh H, et al. (2017). Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol 24:839–46.
  • Lee CC, Mackay JA, Frechet JMJ, et al. (2005). Designing dendrimers for biological applications. Nat Biotechnol 23:1517–26.
  • Lee J, Lee TS, Ryu J, et al. (2013). RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J Nucl Med 54:96–103.
  • Lei X, Jockusch S, Turro NJ, et al. (2008). EPR characterization of gadolinium(III)-containing-PAMAM-dendrimers in the absence and in the presence of paramagnetic probes. J Colloid Interface Sci 322:457–64.
  • Li J, Shi X, Shen M. (2014). Hydrothermal synthesis and functionalization of iron oxide nanoparticles for MR imaging applications. Part Part Syst Charact 31:1223–37.
  • Li J, Zheng L, Cai H, et al. (2013). Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34:8382–92.
  • Li L, Gao F, Jiang W, et al. (2016). Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 23:1726–33.
  • Li X, Wang C, Tan H, et al. (2016). Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials 108:71–80.
  • Li Y, Lin T, Luo Y, et al. (2014). A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun 5:4712.
  • Li Z, Cai W, Cao Q, et al. (2007). (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med 48:1162–71.
  • Lindner S, Michler C, Wängler B, et al. (2014). PESIN multimerization improves receptor avidities and in vivo tumor targeting properties to GRPR-overexpressing tumors. Bioconjug Chem 25:489–500.
  • Liu H, Xu Y, Wen S, et al. (2013). Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles. Chem Eur J 19:6409–16.
  • Liu Y, Welch MJ. (2012). Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 23:671–82.
  • Luehmann HP, Detering L, Fors BP, et al. (2016). PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J Nucl Med 57:1124–9.
  • Luk BT, Zhang L. (2014). Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces 6:21859–73.
  • Luo Y, Zhao L, Li X, et al. (2016). The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. J Mater Chem B 4:7220–5.
  • Ma Y, Mou Q, Wang D, et al. (2016). Dendritic polymers for theranostics. Theranostics 6:930–47.
  • Malinge J, Géraudie B, Savel P, et al. (2017). Liposomes for PET and MR imaging and for dual targeting (magnetic field/glucose moiety): synthesis, properties, and in vivo studies. Mol Pharmaceutics 14:406–14.
  • Maurer T, Eiber M, Schwaiger M, et al. (2016). Current use of PSMA-PET in prostate cancer management. Nat Rev Urol 13:226–35.
  • Meyer JP, Houghton JL, Kozlowski P, et al. (2016). 18F-based pretargeted PET imaging based on bioorthogonal Diels–Alder click chemistry. Bioconjugate Chem 27:298–301.
  • Mintzer MA, Grinstaff MW. (2011). Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–90.
  • Mirshojaei SF, Ahmadi A, Morales-Avila E, et al. (2016). Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer. J Drug Target 24:91–101.
  • Mustafa R, Zhou B, Yang J, et al. (2016). Dendrimer-functionalized laponite nanodisks loaded with gadolinium for T1-weighted MR imaging applications. RSC Adv 6:95112–19.
  • Nogami Y, Iida M, Banno K, et al. (2014). Application of FDG-PET in cervical cancer and endometrial cancer: utility and future prospects. Anticancer Res 34:585–92.
  • Ohno Y, Koyama H, Yoshikawa T, et al. (2015). Three-way comparison of whole-body MR, coregistered whole-body FDG PET/MR, and integrated whole-body FDG PET/CT imaging: TNM and stage assessment capability for non-small cell lung cancer patients. Radiology 275:849–61.
  • Okada M, Nakao R, Hosoi R, et al. (2011). Microdialysis with radiometric monitoring of L-[β-11C]DOPA to assess dopaminergic metabolism: effect of inhibitors of L-amino acid decarboxylase, monoamine oxidase, and catechol-O-methyltransferase on rat striatal dialysate. J Cereb Blood Flow Metab 31:124–31.
  • Pant K, Gröger D, Bergmann R, et al. (2015). Synthesis and biodistribution studies of 3H- and 64Cu-labeled dendritic polyglycerol and dendritic polyglycerol sulfate. Bioconjugate Chem 26:906–18.
  • Pant K, Sedláček O, Nadar RA, et al. (2017). Radiolabelled polymeric materials for imaging and treatment of cancer: Quo Vadis?. Adv Healthc Mater 6:1601115.
  • Park JC, Yu MK, An GI, et al. (2010). Facile preparation of a hybrid nanoprobe for triple-modality optical/PET/MR imaging. Small 6:2863–8.
  • Pellico J, Ruiz-Cabello J, Saiz-Alía M, et al. (2016). Fast synthesis and bioconjugation of (68) Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media Mol Imaging 11:203–10.
  • Penelope B, Dimitrios P, Theodoros T, et al. (2012). Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem 12:2694–702.
  • Peng C, Zheng L, Chen Q, et al. (2012). PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33:1107–19.
  • Pérez-Campaña C, Gómez-Vallejo V, Puigivila M, et al. (2013). Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano 7:3498–505.
  • Petersen AL, Henriksen JR, Binderup T, et al. (2016). In vivo evaluation of PEGylated 64Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT. Eur J Nucl Med Mol Imaging 43:941–52.
  • Phillips E, Penate-Medina O, Zanzonico PB, et al. (2014). Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6:260ra149.
  • Qiao Z, Shi X. (2015). Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 44:1–27.
  • Ratib O, Nkoulou R, Schwaiger M. (2013). Cardiovascular clinical applications of PET/MRI. Clin Transl Imaging 1:65–71.
  • Ren JM, Mckenzie TG, Fu Q, et al. (2016). Star Polymers. Chem Rev 116:6743–836.
  • Rokka J, Snellman A, Kaasalainen M, et al. (2016). 18F-labeling syntheses and preclinical evaluation of functionalized nanoliposomes for Alzheimer's disease. Eur J Pharm Sci 88:257–66.
  • Schüle S-C, Eigentler TK, Garbe C, et al. (2016). Influence of (18)F-FDG PET/CT on therapy management in patients with stage III/IV malignant melanoma. Eur J Nucl Med Mol Imaging 43:482–8.
  • Seo JW, Baek H, Mahakian LM, et al. (2014). (64)Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem 25:231–9.
  • Sharma R, Xu Y, Kim SW, et al. (2013). Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging. Nanoscale 5:7476–83.
  • Shen J, Zhao L, Han G. (2013). Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv Drug Deliv Rev 65:744–55.
  • Shi X, Wang S, Sun H, et al. (2007). Improved biocompatibility of surface functionalized dendrimer-entrapped gold nanoparticles. Soft Matter 3:71–4.
  • Silindir M, Özer AY, Erdoğan S. (2012). The use and importance of liposomes in positron emission tomography. Drug Deliv 19:68–80.
  • Singh RPS, Sharma G, et al. (2016). RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf B Biointerfaces 147:129–41.
  • Smith BR, Gambhir SS. (2017). Nanomaterials for in vivo imaging. Chem Rev 117:901–86.
  • Starmans LWE, Hummelink MA, Rossin R, et al. (2015). 89Zr- and Fe-labeled polymeric micelles for dual modality PET and T1-weighted MR imaging. Adv Healthc Mater 4:2137–45.
  • Stockhofe K, Postema J, Schieferstein H, et al. (2014). Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals (Basel) 7:392–418.
  • Stylianopoulos T, Jain RK. (2015). Design considerations for nanotherapeutics in oncology. Nanomedicine 11:1893–907.
  • Sun G, Xu J, Hagooly A, et al. (2007). Strategies for optimized radiolabeling of nanoparticles for in vivo PET imaging. Adv Mater 19:3157–62.
  • Sun Z, Cheng K, Wu F, et al. (2016). Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging. Nanoscale 8:19644–53.
  • Sundin J, Tolmachev V, Koziorowski J, et al. (1999). High yield direct 76Br-bromination of monoclonal antibodies using chloramine-T. Nucl Med Biol 26:923–9.
  • Sunoqrot S, Bugno J, Lantvit D, et al. (2014). Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. J Control Release 191:115–22.
  • Taldone T, Zatorska D, Ochiana SO, et al. (2016). Radiosynthesis of the iodine-124 labeled Hsp90 inhibitor PU-H71. J Labelled Comp Radiopharm 59:129–32.
  • Tanaka K, Siwu ERO, Minami K, et al. (2010). Noninvasive imaging of dendrimer-type N-glycan clusters: in vivo dynamics dependence on oligosaccharide structure. Angew Chem Int Ed Engl 49:8195–200.
  • Tang J, Sheng Y, Hu H, et al. (2013). Macromolecular MRI contrast agents: structures, properties and applications. Prog Polym Sci 38:462–502.
  • Tomasi G, Rosso L. (2012). PET imaging: implications for the future of therapy monitoring with PET/CT in oncology. Curr Opin Pharmacol 12:569–75.
  • Trembleau L, Simpson M, Cheyne RW, et al. (2011). Development of 18F-fluorinatable dendrons and their application to cancer cell targeting. New J Chem 35:2496–502.
  • Umbehr MH, Müntener M, Hany T, et al. (2013). The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 64:106–17.
  • Van Brussel ASA, Adams A, Oliveira S, et al. (2016). Hypoxia-targeting fluorescent nanobodies for optical molecular imaging of pre-invasive breast cancer. Mol Imaging Biol 18:535–44.
  • Van Duijnhoven SMJ, Rossin R, Van Den Bosch SM, et al. (2015). Diabody pretargeting with click chemistry in vivo. J Nucl Med 56:1422–8.
  • Villemagne VL, Mulligan RS, Pejoska S, et al. (2012). Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 39:983–9.
  • Wadas TJ, Wong EH, Weisman GR, et al. (2010). Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 110:2858–902.
  • Wang K, Zhang X, Zhang L, et al. (2015). Development of biodegradable polymeric implants of RGD-modified PEG-PAMAM-DOX conjugates for long-term intratumoral release. Drug Deliv 22:389–99.
  • Wang Y, Miao Z, Ren G, et al. (2014). A novel affibody bioconjugate for dual-modality imaging of ovarian cancer. Chem Commun (Camb) 50:12832–5.
  • Wängler C, Maschauer S, Prante O, et al. (2010). Multimerization of cRGD peptides by click chemistry: synthetic strategies, chemical limitations, and influence on biological properties. ChemBioChem 11:2168–81.
  • Weineisen M, Schottelius M, Simecek J, et al. (2015). 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med 56:1169–76.
  • Weissleder R. (2006). Molecular imaging in cancer. Science 312:1168–71.
  • Wen S, Li K, Cai H, et al. (2013). Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 34:1570–80.
  • Wu Y, Zhang X, Xiong Z, et al. (2005). microPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide . J Nucl Med 46:1707–18.
  • Wu Z, Li Z, Chen K, et al. (2007). microPET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4) ). J Nucl Med 48:1536–44.
  • Xiao Y, Hong H, Javadi A, et al. (2012). Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials 33:3071–82.
  • Xiao Y, Hong H, Matson VZ, et al. (2012). Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2:757–68.
  • Xing Y, Zhao J, Conti PS, et al. (2014). Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4:290–306.
  • Zeglis BM, Sevak KK, Reiner T, et al. (2013). A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J Nucl Med 54:1389–96.
  • Zeng D, Lee NS, Liu Y, et al. (2012). 64Cu core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 6:5209–19.
  • Zeng D, Zeglis BM, Lewis JS, et al. (2013). The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals. J Nucl Med 54:829–32.
  • Zhai C, Summer D, Rangger C, et al. (2015). Novel bifunctional cyclic chelator for (89)Zr labeling-radiolabeling and targeting properties of RGD conjugates. Mol Pharm 12:2142–50.
  • Zhao L, Zhu J, Cheng Y, et al. (2015). Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 7:19798–808.
  • Zhu Z, Miao W, Li Q, et al. (2012). 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med 53:716–22.