1,387
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Reduction-responsive PEtOz-SS-PCL micelle with tailored size to overcome blood–brain barrier and enhance doxorubicin antiglioma effect

, , , , , , , , , & show all
Pages 1782-1790 | Received 25 Aug 2017, Accepted 04 Nov 2017, Published online: 24 Nov 2017

References

  • An S, He D, Wagner E, et al. (2015). Peptide-like polymers exerting effective glioma-targeted siRNA delivery and release for therapeutic application. Small 11:5142–50.
  • Biddlestone-Thorpe L, Marchi N, Guo K, et al. (2012). Nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents. Adv Drug Deliv Rev 64:605–13.
  • Brunetti J, Pillozzi S, Falciani C, et al. (2015). Tumor-selective peptide-carrier delivery of Paclitaxel increases in vivo activity of the drug. Sci Rep 5:17736.
  • Chen L, Chen F, Zhao M, et al. (2015). A redox-sensitive micelle-like nanoparticle self-assembled from amphiphilic adriamycin-human serum albumin conjugates for tumor targeted therapy. BioMed Res Int 2015:987404.
  • Cho HJ, Yoon IS, Yoon HY, et al. (2012). Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 33:1190–200.
  • Crommelin DJ, Storm G, Jiskoot W, et al. (2003). Nanotechnological approaches for the delivery of macromolecules. J Control Release 87:81–8.
  • Ding J, Xiao C, Li Y, et al. (2013). Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. J Control Release 169:193–203.
  • Duncan R. (2003). The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–60.
  • Felber AE, Dufresne MH, Leroux JC. (2012). pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 64:979–92.
  • Groothuis DR. (2000). The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-oncology 2:45–59.
  • Guan X, Li Y, Jiao Z, et al. (2013). A pH-sensitive charge-conversion system for doxorubicin delivery. Acta Biomater 9:7672–8.
  • He X, Li J, An S, et al. (2013). pH-sensitive drug-delivery systems for tumor targeting. Ther Deliv 4:1499–510.
  • Hoogenboom R. (2009). Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed Engl 48:7978–94.
  • Hsiue GH, Chiang HZ, Wang CH, et al. (2006). Nonviral gene carriers based on diblock copolymers of poly(2-ethyl-2-oxazoline) and linear polyethylenimine. Bioconjug Chem 17:781–6.
  • Hsiue GH, Wang CH, Lo CL, et al. (2006). Environmental-sensitive micelles based on poly(2-ethyl-2-oxazoline)-b-poly(L-lactide) diblock copolymer for application in drug delivery. Int J Pharm 317:69–75.
  • Knop K, Hoogenboom R, Fischer D, et al. (2010). Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49:6288–308.
  • Koide H, Asai T, Hatanake K, et al. (2010). T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes. Int J Pharm 392:218–23.
  • Kunjachan S, Detappe A, Kumar R, et al. (2015). Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy. Nano Lett 15:7488–96.
  • Li J, Cai P, Shalviri A, et al. (2014). A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano 8:9925–40.
  • Liang J, Wu WL, Xu XD, et al. (2014). pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier. Colloids Surf B Biointerfaces 114:398–403.
  • Liu R, Colby AH, Gilmore D, et al. (2016). Nanoparticle tumor localization, disruption of autophagosomal trafficking, and prolonged drug delivery improve survival in peritoneal mesothelioma. Biomaterials 102:175–86.
  • Mager I, Meyer AH, Li J, et al. (2017). Targeting blood-brain-barrier transcytosis - perspectives for drug delivery. Neuropharmacology 120:4–7.
  • Manavitehrani I, Fathi A, Badr H, et al. (2016). Biomedical applications of biodegradable polyesters. Polymers 8:20.
  • Minniti G, De Sanctis V, Muni R, et al. (2008). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma in elderly patients. J Neurooncol 88:97–103.
  • Moreadith RW, Viegas TX, Bentley MD, et al. (2017). Clinical development of a poly (2-oxazoline)(POZ) polymer therapeutic for the treatment of Parkinson’s disease–Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur Polym 88:524–52.
  • Pardridge WM. (2007a). Drug targeting to the brain. Pharm Res 24:1733–44.
  • Pardridge WM. (2007b). Brain drug development and brain drug targeting. Pharm Res 24:1729–32.
  • Pasut G, Veronese FM. (2007). Polymer–drug conjugation, recent achievements and general strategies. Prog. Polym Sci 32:933–61.
  • Schneider SW, Ludwig T, Tatenhorst L, et al. (2004). Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol 107:272–6.
  • Senevirathne SA, Washington KE, Biewer MC, et al. (2017). HDAC inhibitor conjugated polymeric Prodrug micelles for doxorubicin delivery. J Mater Chem B Mater Biol Med 5:2106–14.
  • Shi C, Zhang Z, Shi J, et al. (2015). Co-delivery of docetaxel and chloroquine via PEO-PPO-PCL/TPGS micelles for overcoming multidrug resistance. Int J Pharm 495:932–9.
  • Stylianopoulos T. (2013). EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther Deliv 4:421–3.
  • Subburaman S, Ganesan K, Ramachandran M. (2014). Protective role of naringenin against doxorubicin-induced cardiotoxicity in a rat model: histopathology and mRNA expression profile studies. J Environ Pathol Toxicol Oncol 33:363–76.
  • Sun H, Guo B, Cheng R, et al. (2009). Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 30:6358–66.
  • Tagami T, Nakamura K, Shimizu T, et al. (2010). CpG motifs in pDNA-sequences increase anti-PEG IgM production induced by PEG-coated pDNA-lipoplexes. J Controlled Release 142:160–6.
  • Wei X, Chen X, Ying M, et al. (2014). Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B 4:193–201.
  • Wohlfart S, Gelperina S, Kreuter J. (2012). Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161:264–73.
  • Yang YQ, Lin WJ, Zhao B, et al. (2012). Synthesis and physicochemical characterization of amphiphilic triblock copolymer brush containing pH-sensitive linkage for oral drug delivery. Langmuir 28:8251–9.
  • Zhang CG, Zhu WJ, Liu Y, et al. (2016). Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci Rep 6:23859
  • Zhang W, He J, Liu Z, et al. (2010). Biocompatible and pH-responsive triblock copolymer mPEG-b-PCL-b-PDMAEMA: synthesis, self-assembly, and application. J Polym Sci A Polym Chem 48:1079–91.
  • Zhao Y, Zhou YX, Wang DS, et al. (2015). pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor. Acta Biomaterialia 17:182–92.
  • Zhu W, Nese A, Matyjaszewski K. (2011). Thermoresponsive star triblock copolymers by combination of ROP and ATRP: from micelles to hydrogels. J Polym Sci A Polym Chem 49:1942–52.