5,652
Views
64
CrossRef citations to date
0
Altmetric
Review Article

Recent developments in d-α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy

, , , , &
Pages 1831-1842 | Received 28 Sep 2017, Accepted 14 Nov 2017, Published online: 28 Nov 2017

References

  • Abbad S, Wang C, Waddad AY, et al. (2015). Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acidpoly(butyl cyanoacrylate) and d-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate. Int J Nanomed 10:305–20.
  • Anbharasi V, Cao N, Feng SS. (2010). Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol succinate and folic acid as a prodrug for targeted chemotherapy. J Biomed Mater Res A 94:730–43.
  • Assanhou AG, Li WY, Zhang L, et al. (2015). Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials 73:284–95.
  • Bamrungsap S, Zhao Z, Chen T, et al. (2012). Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond) 7:1253–71.
  • Bao Y, Guo Y, Zhuang X, et al. (2014). D-alpha-tocopherol polyethylene glycol succinate-based redox-sensitive paclitaxel prodrug for overcoming multidrug resistance in cancer cells. Mol Pharmaceutics 11:3196–209.
  • Bao Y, Kong M, Gao X, et al. (2017). pH-, redox dual-sensitive poly(β-amino ester)-g-TPGS copolymer nanoparticles for drug delivery and inhibition of multidrug resistance in cancer. React Funct Polym 120:131–8.
  • Bao Y, Yin M, Hu X, et al. (2016). A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. J Control Release 235:182–94.
  • Benival DM, Devarajan PV. (2015). In situ lipidization as a new approach for the design of a self microemulsifying drug delivery system (SMEDDS) of doxorubicin hydrochloride for oral administration. J Biomed Nanotechnol 11:913–22.
  • Bernabeu E, Gonzalez L, Legaspi MJ, et al. (2016). Paclitaxel-loaded TPGS-b-PCL nanoparticles: in vitro cytotoxicity and cellular uptake in MCF-7 and MDA-MB-231 Cells versus mPEG-b-PCL Nanoparticles and Abraxane®. J Nanosci Nanotechnol 16:160–70.
  • Bernabeu E, Helguera G, Legaspi MJ, et al. (2014). Paclitaxel-loaded PCL-TPGS nanoparticles: in vitro and in vivo performance compared with Abraxane (R). Colloid Surface B 113:43–50.
  • Brigelius-Flohé R, Galli F. (2010). Vitamin E: a vitamin still awaiting the detection of its biological function. Mol Nutr Food Res 54:583–7.
  • Brown GC. (1999). Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1411:351–69.
  • Cao H, Wang Y, He X, et al. (2015). Codelivery of sorafenib and curcumin by directed self-assembled nanoparticles enhances therapeutic effect on hepatocellular carcinoma. Mol Pharmaceutics 12:922–31.
  • Cao N, Feng S-S. (2008). Doxorubicin conjugated to d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation chemistry, characterization, in vitro and in vivo evaluation. Biomaterials 29:3856–65.
  • Cao X, Zhou X, Wang Y, et al. (2016). Diblock- and triblock-copolymer based mixed micelles with high tumor penetration in vitro and in vivo. J Mater Chem B 4:3216–24.
  • Cardenas E, Ghosh R. (2013). Vitamin E: a dark horse at the crossroad of cancer management. Biochem Pharmacol 86:845–52.
  • Chen FC, Wu J, Zheng CL, et al. (2016). TPGS modified reduced bovine serum albumin nanoparticles as a lipophilic anticancer drug carrier for overcoming multidrug resistance. J Mater Chem B 4:3959–68.
  • Cheng G, Zielonka J, Mcallister DM, et al. (2013). Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer 13:285.
  • Cheng W, Liang C, Xu L, et al. (2017). TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small 13:1700623.
  • Cho HJ, Park JW, Yoon IS, Kim DD. (2014). Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int J Nanomed 9:495–504.
  • Choudhury H, Gorain B, Pandey M, et al. (2017). Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. Int J Pharm 529:506–22.
  • Collnot EM, Baldes C, Schaefer UF, et al. (2010). Vitamin E TPGS p-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharmaceutics 7:642–51.
  • Collnot EM, Baldes C, Wempe MF, et al. (2007). Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity. Mol Pharmaceutics 4:465–74.
  • Danhier F, Kouhe TTB, Duhem N, et al. (2014). Vitamin E-based micelles enhance the anticancer activity of doxorubicin. Int J Pharm 476:9–15.
  • De Melo-Diogo D, Pais-Silva C, Costa EC, et al. (2017). D-alpha-tocopheryl polyethylene glycol 1000 succinate functionalized nanographene oxide for cancer therapy. Nanomedicine 12:443–56.
  • Dintaman JM, Silverman JA. (1999). Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res 16:1550–6.
  • Dong L, Freeman R, Liu J, et al. (2009). Suppression of tumor growth in vivo by the mitocan alpha-tocopheryl succinate requires respiratory complex ii. Clin Cancer Res 15:1593–600.
  • Duan YW, Cai XQ, Du HL, Zhai GX. (2015). Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloid Surface B 128:322–30.
  • Duhem N, Danhier F, Preat V. (2014). Vitamin E-based nanomedicines for anti-cancer drug delivery. J Control Release 182:33–44.
  • Fan Z, Wu J, Fang X, Sha X. (2013). A new function of vitamin E-TPGS in the intestinal lymphatic transport of lipophilic drugs: enhancing the secretion of chylomicrons. Int J Pharm 445:141–7.
  • Fukumura D, Kashiwagi S, Jain RK. (2006). The role of nitric oxide in tumour progression. Nat Rev Cancer 6:521–34.
  • Gao L, Liu G, Ma J, et al. (2014). Paclitaxel nanosuspension coated with P-gp inhibitory surfactants: II. Ability to reverse the drug-resistance of H460 human lung cancer cells. Colloid Surface B 117:122–7.
  • Gao L, Liu GY, Kang JR, et al. (2013). Paclitaxel nanosuspensions coated with P-gp inhibitory surfactants: I. Acute toxicity and pharmacokinetics studies. Colloid Surface B 111:277–81.
  • Guissi NEI, Li H, Xu Y, et al. (2017). Mitoxantrone- and folate-TPGS2K conjugate hybrid micellar aggregates to circumvent toxicity and enhance efficiency for breast cancer therapy. Mol Pharm 14:1082–94.
  • Guo Y, Chu M, Tan S, et al. (2014). Chitosan-g-TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance. Mol Pharm 11:59–70.
  • Guo Y, Luo J, Tan S, et al. (2013). The applications of Vitamin E TPGS in drug delivery. Eur J Pharm Sci 49:175–86.
  • Guo Y, Niu B, Song Q, et al. (2016). RGD-decorated redox-responsive D-alpha-tocopherol polyethylene glycol succinate-poly(lactide) nanoparticles for targeted drug delivery. J Mater Chem B 4:2338–50.
  • Han N, Zhao Q, Wan L, et al. (2015). Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance. ACS Appl Mater Interfaces 7:3342–51.
  • Hao TN, Chen DW, Liu KX, et al. (2015). Micelles of d-alpha-tocopheryl polyethylene glycol 2000 succinate (TPGS 2k) for doxorubicin delivery with reversal of multidrug resistance. ACS Appl Mater Interfaces 7:18064–75.
  • Hou WX, Zhao X, Qian XQ, et al. (2016). pH-sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale 8:104–16.
  • Jin Y, Zhang Z, Zhao T, et al. (2015). Mixed micelles of doxorubicin overcome multidrug resistance by inhibiting the expression of p-glycoprotein. J Biomed Nanotechnol 11:1330–8.
  • Kai D, Yan Y, Wang P, et al. (2016). Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance. IJN 11:5109–23.
  • Kulhari H, Pooja D, Shrivastava S, et al. (2015). Cyclic-RGDfK peptide conjugated succinoyl-TPGS nanomicelles for targeted delivery of docetaxel to integrin receptor over-expressing angiogenic tumours. Nanomed-Nanotechnol 11:1511–20.
  • Kutty RV, Chia SL, Setyawati MI, et al. (2015). In vivo and ex vivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer. Biomaterials 63:58–69.
  • Kutty RV, Feng SS. (2013). Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials 34:10160–71.
  • Li Z, Qiu L, Chen Q, et al. (2015). pH-sensitive nanoparticles of poly(L-histidine)-poly(lactide-co-glycolide)-tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomater 11:137–50.
  • Liu BY, Wu C, He XY, et al. (2016a). Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment. Sci Bull 61:552–60.
  • Liu HZ, Ma Y, Liu D, et al. (2016b). The effect of surfactant on paclitaxel nanocrystals: an in vitro and in vivo study. J Biomed Nanotechnol 12:147–53.
  • Liu Y, Huang L, Liu F. (2010). Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. Mol Pharm 7:863.
  • Ma Y, Liu D, Wang D, et al. (2014). Combinational delivery of hydrophobic and hydrophilic anticancer drugs in single nanoemulsions to treat MDR in cancer. Mol Pharmaceutics 11:2623–30.
  • Maksimenko A, Dosio F, Mougin J, et al. (2014). A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proc Natl Acad Sci USA 111:E217–26.
  • Masood F. (2016). Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl 60:569–78.
  • Mehra NK, Verma AK, Mishra PR, Jain NK. (2014). The cancer targeting potential of d-α-tocopheryl polyethylene glycol 1000 succinate tethered multi walled carbon nanotubes. Biomaterials 35:4573–88.
  • Meng X, Liu J, Yu X, et al. (2017). Pluronic f127 and d-alpha-tocopheryl polyethylene glycol succinate (TPGS) mixed micelles for targeting drug delivery across the blood brain barrier. Sci Rep 7:2964.
  • Mi Y, Liu YT, Feng SS. (2011). Formulation of Docetaxel by folic acid-conjugated D-alpha-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS(2k)) micelles for targeted and synergistic chemotherapy. Biomaterials 32:4058–66.
  • Mi Y, Zhao J, Feng S-S. (2012). Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. Int J Pharm 438:98–106.
  • Mi Y, Zhao J, Feng S-S. (2013). Targeted co-delivery of docetaxel, cisplatin and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer. J Control Release 169:185–92.
  • Mohapatra S, Fan Z, Chen C, et al. (2015). Adding vitamin E-TPGS to the formulation of Genexol-PM: specially mixed micelles improve drug-loading ability and cytotoxicity against multidrug-resistant tumors significantly. PloS One 10:e0120129.
  • Muddineti OS, Ghosh B, Biswas S. (2017). Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery. Expert Opin Drug Deliv 14:715–26.
  • Mura S, Nicolas J, Couvreur P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003.
  • Muthu MS, Kulkarni SA, Liu Y, Feng S-S. (2012). Development of docetaxel-loaded vitamin E TPGS micelles: formulation optimization, effects on brain cancer cells and biodistribution in rats. Nanomedicine 7:353–64.
  • Muthu MS, Kutty RV, Luo Z, et al. (2015). Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. Biomaterials 39:234–48.
  • Neophytou CM, Constantinou C, Papageorgis P, Constantinou AI. (2014). D-alpha-tocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin-overexpressing breast cancer cells. Biochem Pharmacol 89:31–42.
  • Neuzil J, Dong L-F, Ramanathapuram L, et al. (2007a). Vitamin E analogues as a novel group of mitocans: anti-cancer agents that act by targeting mitochondria. Mol Aspects Med 28:607–45.
  • Neuzil J, Tomasetti M, Zhao Y, et al. (2007b). Vitamin E analogs, a novel group of “mitocans” as anticancer agents: the importance of being redox-silent, . Mol Pharmacol 71:1185–99.
  • Pham CV, Cho CW. (2017). Application of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in transdermal and topical drug delivery systems (TDDS). J Pharm Invest 47:1–11.
  • Pooja D, Kulhari H, Singh MK, et al. (2014). Dendrimer-TPGS mixed micelles for enhanced solubility and cellular toxicity of taxanes. Colloids Surf B Biointerfaces 121:461–8.
  • Qiao H, Zhu Z, Fang D, et al. (2017). Redox-triggered mitoxantrone prodrug micelles for overcoming multidrug-resistant breast cancer. J Drug Target 18:1–11.
  • Qiu L, Qiao M, Chen Q, et al. (2014). Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials 35:9877–87.
  • Rao N, Yoon H, Han H, et al. (2016). Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert Opin Drug Deliv 13:239.
  • Saneja A, Khare V, Alam N, et al. (2014). Advances in P-glycoprotein-based approaches for delivering anticancer drugs: pharmacokinetic perspective and clinical relevance. Expert Opin Drug Deliv 11:121.
  • Shen J, Meng Q, Sui H, et al. (2014a). iRGD conjugated TPGS mediates codelivery of Paclitaxel and Survivin shRNA for the reversal of Lung cancer resistance. Mol Pharm 11:2579–91.
  • Shen J, Sun H, Meng Q, et al. (2014b). Simultaneous inhibition of tumor growth and angiogenesis for resistant hepatocellular carcinoma by co-delivery of sorafenib and Survivin small hairpin RNA. Mol Pharmaceut 11:3342–51.
  • Shen J, Sun H, Xu P, et al. (2013). Simultaneous inhibition of metastasis and growth of breast cancer by co-delivery of twist shRNA and paclitaxel using pluronic P85-PEI/TPGS complex nanoparticles. Biomaterials 34:1581–90.
  • Sheng SH, Zhang T, Li SJ, et al. (2015). Targeting vitamin E TPGS-cantharidin conjugate nanoparticles for colorectal cancer therapy. Rsc Adv 5:53846–56.
  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37.
  • Shi JF, Sun MG, Li XY, et al. (2015). A combination of targeted sunitinib liposomes and targeted vinorelbine liposomes for treating invasive breast cancer. J Biomed Nanotechnol 11:1568–82.
  • Shin GH, Li J, Cho JH, et al. (2016). Enhancement of curcumin solubility by phase change from crystalline to amorphous in CUR-TPGS nanosuspension. J Food Sci 81:N494–501.
  • Singh RP, Sharma G, Sonali, et al. (2016). Transferrin receptor targeted PLA-TPGS micelles improved efficacy and safety in docetaxel delivery. Int J Bio Macromol 83:335–44.
  • Song Q, Tan S, Zhuang X, et al. (2014). Nitric oxide-releasing D-α-tocopheryl polyethylene glycol succinate (TPGS) for enhancing antitumor activity of doxorubicin. Mol Pharmaceutics 11:4118–29.
  • Su Z, Chen M, Xiao Y, et al. (2014). ROS-triggered and regenerating anticancer nanosystem: an effective strategy to subdue tumor's multidrug resistance. J Control Release 196:370–83.
  • Takada T, Suzuki H. (2010). Molecular mechanisms of membrane transport of vitamin E. Mol Nutr Food Res 54:616–22.
  • Tang J, Fu Q, Wang Y, et al. (2013). Vitamin E reverses multidrug resistance in vitro and in vivo. Cancer Lett 336:149–57.
  • Tang XJ, Han M, Yang B, et al. (2014). Nanocarrier improves the bioavailability, stability and antitumor activity of camptothecin. Int J Pharm 477:536–45.
  • Tian G, Zheng X, Zhang X, et al. (2015). TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials 40:107–16.
  • Valicherla GR, Dave KM, Syed AA, et al. (2016). Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci Rep-UK 6:26895.
  • Wang A-T, Liang D-S, Liu Y-J, Qi X-R. (2015a). Roles of ligand and TPGS of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors. Biomaterials 53:160–72.
  • Wang D, Tang JL, Wang YJ, et al. (2013). Multifunctional nanoparticles based on a single-molecule modification for the treatment of drug-resistant cancer. Mol Pharmaceutics 10:1465–9.
  • Wang S, Chen R, Morott J, et al. (2015b). mPEG-b-PCL/TPGS mixed micelles for delivery of resveratrol in overcoming resistant breast cancer. Expert Opin Drug Deliv 12:361–73.
  • Wang SP, Yang Y, Wang YT, Chen MW. (2015c). Gambogic acid-loaded pH-sensitive mixed micelles for overcoming breast cancer resistance. Int J Pharm 495:840–8.
  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–57.
  • Xu GJ, Yu XH, Zhang JX, et al. (2016). Robust aptamer-polydopamine-functionalized M-PLGA-TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. Int J Nanomed 11:2953–65.
  • Xu P, Yin Q, Shen J, et al. (2013). Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. Int J Pharm 454:21–30.
  • Xu P, Yu H, Zhang Z, et al. (2014). Hydrogen-bonded and reduction-responsive micelles loading atorvastatin for therapy of breast cancer metastasis. Biomaterials 35:7574–87.
  • Yin M, Bao Y, Gao X, et al. (2017a). Redox/pH dual-sensitive hybrid micelles for targeting delivery and overcoming multidrug resistance of cancer. J Mater Chem B 5:2964–78.
  • Yin M, Tan S, Bao Y, Zhang Z. (2017b). Enhanced tumor therapy via drug co-delivery and in situ vascular-promoting strategy. J Control Release 258:108–20.
  • Youk HJ, Lee E, Choi MK, et al. (2005). Enhanced anticancer efficacy of alpha-tocopheryl succinate by conjugation with polyethylene glycol. J Control Release 107:43–52.
  • Zhang J, Chen R, Fang X, et al. (2015). Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Res 8:201–18.
  • Zhang J, Li J, Shi Z, et al. (2017). pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater 58:349–64.
  • Zhang Y, Zhang C, Chen J, et al. (2017b). Trackable mitochondria-targeting nanomicellar loaded with doxorubicin for overcoming drug resistance. ACS Appl Mater Inter 9:25152–63.
  • Zhang Z, Liu Z, Ma L, et al. (2013). Reversal of multidrug resistance by mitochondrial targeted self-assembled nanocarrier based on stearylamine. Mol Pharmaceutics 10:2426–34.
  • Zhang Z, Tan S, Feng S-S. (2012). Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 33:4889–906.
  • Zhao J, Mi Y, Feng SS. (2013a). Targeted co-delivery of docetaxel and siPlk1 by herceptin-conjugated vitamin E TPGS based immunomicelles. Biomaterials 34:3411–21.
  • Zhao S, Tan S, Guo Y, et al. (2013b). pH-sensitive docetaxel-loadedd-α-tocopheryl polyethylene glycol succinate–poly(β-amino ester) copolymer nanoparticles for overcoming multidrug resistance. Biomacromolecules 14:2636–46.
  • Zhou J, Zhao WY, Ma X, et al. (2013). The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 34:3626–38.
  • Zhu D, Tao W, Zhang H, et al. (2016). Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater 30:144–54.