6,375
Views
42
CrossRef citations to date
0
Altmetric
Review Article

Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles

&
Pages 1898-1908 | Received 02 Oct 2017, Accepted 23 Nov 2017, Published online: 01 Dec 2017

References

  • Accardo A, Ringhieri P, Tesauro D, et al. (2013). Liposomes derivatized with tetrabranched neurotensin peptides via click chemistry reactions. New J Chem 37:3528–34.
  • Akita N, Maruta F, Seymour LW, et al. (2006). Identification of oligopeptides binding to peritoneal tumors of gastric cancer. Cancer Sci 97:1075–81.
  • Arap W, Kolonin MG, Trepel M, et al. (2002). Steps toward mapping the human vasculature by phage display. Nat Med 8:121–7.
  • Arap W, Pasqualini R, Ruoslahti E. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–80.
  • Avvakumova S, Colombo M, Tortora P, et al. (2014). Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol 32:11–20.
  • Bábíčková J, Tóthová Ľ, Boor P, et al. (2013). In vivo phage display-a discovery tool in molecular biomedicine. Biotechnol Adv 31:1247–59.
  • Baird A. (2011). Gene transfer into mammalian cells using targeted filamentous bacteriophage. Cold Spring Harb Protoc 2011:950.
  • Bakhshinejad B, Karimi M, Sadeghizadeh M. (2014). Bacteriophages and medical oncology: targeted gene therapy of cancer. Med Oncol 31:1–11.
  • Bar H, Yacoby I, Benhar I. (2008). Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol 8:37.
  • Bardy P, Pantucek R, Benesik M, et al. (2016). Genetically modified bacteriophages in applied microbiology. J Appl Microbiol 121:618–33.
  • Bedi D, Gillespie JW, Petrenko VA, et al. (2013). Targeted delivery of siRNA into breast cancer cells via phage fusion proteins. Mol Pharm 10:551–9.
  • Bedi D, Gillespie JW, Petrenko VA. (2014). Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines. Protein Eng Des Sel 27:235–43.
  • Bedi D, Musacchio T, Fagbohun OA, et al. (2011). Delivery of siRNA into breast cancer cells via phage fusion protein-targeted liposomes. Nanomedicine 7:315–13.
  • Bertrand N, Wu J, Xu X, et al. (2014). Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25.
  • Biju V. (2014). Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–64.
  • Blanco E, Hsiao A, Mann AP, et al. (2011). Nanomedicine in cancer therapy: innovative trends and prospects. Cancer Sci 102:1247–52.
  • Bray BL. (2003). Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2:587–93.
  • Burg MA, Jensen-Pergakes K, Gonzalez AM, et al. (2002). Enhanced phagemid particle gene transfer in camptothecin-treated carcinoma cells. Cancer Res 62:977–81.
  • Cao B, Yang M, Zhu Y, et al. (2014). Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy. Adv Mater Weinheim 26:4627–31.
  • Carrera MR, Kaufmann GF, Mee JM, et al. (2004). Treating cocaine addiction with viruses. Proc Natl Acad Sci USA 101:10416–21.
  • Carrico ZM, Farkas ME, Zhou Y, et al. (2012). N-Terminal labeling of filamentous phage to create cancer marker imaging agents. ACS Nano 6:6675–80.
  • Chanishvili N. (2012). Phage therapy—history from Twort and d’Herelle through Soviet experience to current approaches. Bacteriophages 83:1.
  • Chauhan VP, Popović Z, Chen O, et al. (2011). Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Edit 123:11619–22.
  • Cheng Y, Zhao L, Li Y, et al. (2011). Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 40:2673–703.
  • Conde J, Doria G, Baptista P. (2012). Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:751075.
  • Cruz V, Lal A, Mccutchan T. (1988). Immunogenicity and epitope mapping of foreign sequences via genetically engineered filamentous phage. J Biol Chem 263:5.
  • Debattista J. (2004). Phage therapy: where East meets West. Expert Rev anti Infect Ther 2:815.
  • Deutscher SL. (2010). Phage display in molecular imaging and diagnosis of cancer. Chem Rev 110:6.
  • Devemy E, Blaschuk OW. (2009). Identification of a novel dual E- and N-cadherin antagonist . Peptides 30:1539–47.
  • Devlin JJ, Panganiban LC, Devlin PE. (1990). Random peptide libraries: a source of specific protein binding molecules. Science 249:404–6.
  • Dobbelstein M, Moll U. (2014). Targeting tumour-supportive cellular machineries in anticancer drug development. Nat Rev Drug Discov 13:179–96.
  • Dos Santos N, Allen C, Doppen A-M, et al. (2007). Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta 1768:1367–77.
  • Edgar R, Friedman N, Molshanski-Mor S, et al. (2012). Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl Environ Micro 78:744–51.
  • Elbayoumi TA, Torchilin VP. (2010). Current trends in liposome research. Methods Mol Biol 605:1.
  • Emerich DF, Thanos CG. (2008). Multifunctional peptide-based nanosystems for improving delivery and molecular imaging. Curr Opin Mol Ther 10:132–9.
  • Fang C, Shi B, Pei Y-Y. (2005). Effect of MePEG molecular weight and particle size on in vitro release of tumor necrosis factor-alpha-loaded nanoparticles . Acta Pharmacol Sin 26:242–9.
  • Fischetti VA, Nelson D, Schuch R. (2006). Reinventing phage therapy: are the parts greater than the sum? Nat Biotechnol 24:1508–11.
  • Frankel AD, Pabo CO. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–93.
  • Frenkel D, Solomon B. (2002). Filamentous phage as vector-mediated antibody delivery to the brain. Proc Natl Acad Sci USA 99:5675–9.
  • Gandra N, Abbineni G, Qu X. (2013a). Bacteriophage bionanowire as a carrier for both cancer-targeting peptides and photosensitizers and its use in selective cancer cell killing by photodynamic therapy. Small 9:215–21.
  • Gandra N, Wang DD, Zhu Y, et al. (2013b). Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells. Angew Chem Int Edit 125:11488–91.
  • Gao C, Mao S, Ditzel HJ, et al. (2002a). A cell-penetrating peptide from a novel pVII-pIX phage-displayed random peptide library . Bioorg Med Chem 10:4057–65.
  • Gao C, Mao S, Kaufmann G, et al. (2002b). A method for the generation of combinatorial antibody libraries using pIX phage display. Proc Natl Acad Sci USA 99:12612–16.
  • Ghosh D, Kohli AG, Moser F, et al. (2012). Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery. ACS Synth Biol 1:576–82.
  • Górski A, Międzybrodzki R, Borysowski J, et al. (2012). Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res 83:41–71.
  • Gravitz L. (2012). Turning a new phage. Nat Med 18:1318–20.
  • Gray BP, Brown KC. (2014). Combinatorial peptide libraries: mining for cell-binding peptides. Chem Rev 114:1020–81.
  • Gray BP, Li S, Brown KC. (2013). From phage display to nanoparticle delivery: functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjugate Chem 24:85–96.
  • Green M, Loewenstein PM. (1988). Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–88.
  • Gross AL, Gillespie JW, Petrenko VA. (2016). Promiscuous tumor targeting phage proteins. Protein Eng Des Sel 29:93–103.
  • Horst J, Kluge F, Beyreuther K, et al. (1975). Gene transfer to human cells: transducing phage lambda plac gene expression in GMI-gangliosidosis fibroblasts. Proc Natl Acad Sci USA 72:3531–5.
  • Hagens S, Bläsi U. (2003). Genetically modified filamentous phage as bactericidal agents: a pilot study. Lett Appl Microbiol 37:318–23.
  • Hagens S, Habel A, Ahsen UV, et al. (2004). Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother 48:3817–22.
  • Hajitou A, Rangel R, Trepel M, et al. (2007). Design and construction of targeted AAVP vectors for mammalian cell transduction. Nat Protoc 2:523–31.
  • Hajitou A, Trepel M, Lilley CE, et al. (2006). A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125:385–98.
  • Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, et al. (2013). Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today 18:1144–57.
  • Han L, Liu P, Petrenko VA, et al. (2016). A label-free electrochemical impedance cytosensor based on specific peptide-fused phage selected from landscape phage library. Sci Rep 6:22199.
  • Hart S, Harbottle R, Cooper R, et al. (1995). Gene delivery and expression mediated by an integrin-binding peptide. Gene Ther 2:552–4.
  • Hart SL, Knight AM, Harbottle RP, et al. (1994). Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp-containing peptide. J Biol Chem 269:12468–74.
  • Heitz F, Morris MC, Divita G. (2009). Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Brit J Pharmacol 157:195–206.
  • Henein A. (2013). What are the limitations on the wider therapeutic use of phage? Bacteriophage 3:e24872.
  • Henry KA, Arbabi-Ghahroudi M, Scott JK. (2015). Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 6:755.
  • Hong FD, Clayman GL. (2000). Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Cancer Res 60:6551–6.
  • Hou L, Meng X. (2017). Phage display technology and tumor targeted therapy. Cancer Res and Clin 29:214–16.
  • Houimel M, Schneider P, Terskikh A, et al. (2001). Selection of peptides and synthesis of pentameric peptabody molecules reacting specifically with ErbB-2 receptor. Int J Cancer 92:748–55.
  • Huang J, Lin L, Sun D, et al. (2015). Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44:6330–74.
  • Hufton SE, Moerkerk PT, Meulemans EV, et al. (1999). Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J Immunol Methods 231:39–51.
  • Jayanna PK, Torchilin VP, Petrenko VA. (2009). Liposomes targeted by fusion phage proteins. Nanomedicine 5:83–9.
  • Jung E, Lee NK, Kang SK, et al. (2012). Identification of tissue-specific targeting peptide. J Comput Aided Mol Des 26:1267–75.
  • Kalarical Janardhanan S, Narayan S, Abbineni G, et al. (2010). Architectonics of phage-liposome nanowebs as optimized photosensitizer vehicles for photodynamic cancer therapy. Mol Cancer Ther 9:2524–35.
  • Kamada H, Okamoto T, Kawamura M, et al. (2007). Creation of novel cell-penetrating peptides for intracellular drug delivery using systematic phage display technology originated from Tat transduction domain. Biol Pharm Bull 30:218–23.
  • Kaur T, Nafissi N, Wasfi O, et al. (2012). Immunocompatibility of bacteriophages as nanomedicines. J Nanotechnol 2012:1687–9503.
  • Kehoe JW, Kay BK. (2005). Filamentous phage display in the new millennium. Chem Rev 105:4056–72.
  • Kia A, Yata T, Hajji N, et al. (2013). Inhibition of histone deacetylation and DNA methylation improves gene expression mediated by the adeno-associated virus/phage in cancer cells. Viruses 5:2561–72.
  • Kim Y, Kwon C, Jeon H. (2017). Genetically engineered phage induced selective H9c2 cardiomyocytes patterning in PDMS microgrooves. Materials (Basel) 10:1–8.
  • Kooijmans SA, Vader P, Van Dommelen SM, et al. (2012). Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 7:1525.
  • Krag DN, Shukla GS, Shen GP, et al. (2006). Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res 66:7724–33.
  • Kropinski AM. (2006). Phage therapy: everything old is new again. Can J Infect Dis Med Microbiol 17:297.
  • Kwaśnikowski P, Kristensen P, Markiewicz WT. (2005). Multivalent display system on filamentous bacteriophage pVII minor coat protein. J Immunol Methods 307:135–43.
  • Lam KS, Salmon SE, Hersh EM, et al. (1991). A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:3.
  • Larimer BM, Deutscher SL. (2014). Development of a peptide by phage display for SPECT imaging of resistance-susceptible breast cancer. Am J Nucl Med Mol Imaging 4:435.
  • Larroca D, Jensen-Pergakes K, Burg MA, et al. (2001). Receptor-targeted gene delivery using multivalent phagemid particles. Mol Ther 3:476–84.
  • Larroca D, Kassner PD, Witte A, et al. (1999). Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J 13:727–34.
  • Lee SY, Ferrari M, Decuzzi P. (2009a). Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20:495101.
  • Lee YJ, Yi H, Kim WJ, et al. (2009b). Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324:5.
  • Levine RM, Scott CM, Kokkoli E. (2013). Peptide functionalized nanoparticles for nonviral gene delivery. Soft Matter 9:985–1004.
  • Li K, Chen Y, Li S, et al. (2010). Chemical modification of M13 bacteriophage and its application in cancer cell imaging. Bioconjug Chem 21:1369–77.
  • Li Z, Zhao R, Wu X, et al. (2005). Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J 19:1978–85.
  • Lochhead JJ, Thorne RG. (2012). Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64:614–28.
  • Longmire MR, Ogawa M, Choyke PL, et al. (2011). Biologically optimized nanosized molecules and particles: more than just size. Bioconjug Chem 22:993–1000.
  • Lu TK, Collins JJ. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA 106:4629–34.
  • Ma K, Wang DD, Lin Y, et al. (2013). Synergetic targeted delivery of sleeping-beauty transposon system to mesenchymal stem cells using LPD nanoparticles modified with a phage-displayed targeting peptide. Adv Funct Mater 23:1172–81.
  • Ma Y, Nolte RJ, Cornelissen JJ. (2012). Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev 64:811–25.
  • Ma Z, Qin H, Chen H, et al. (2017). Phage display-derived oligopeptide-functionalized probes for in vivo specific photoacoustic imaging of osteosarcoma. Nano Medicine 13:111–21.
  • Madani F, Lindberg S, Langel U, et al. (2011). Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729.
  • Maldiney T, Richard C, Seguin J, et al. (2011). Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 5:854–62.
  • Mao C, Flynn CE, Hayhurst A, et al. (2003). Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci USA 100:6946–51.
  • Mao C, Solis D, Reiss B, et al. (2004). Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:213.
  • Mao C, Wang F, Cao B. (2012). Controlling nanostructures of mesoporous silica fibers by supramolecular assembly of genetically modifiable bacteriophages. Angew Chem Int Edit 51:6411–15.
  • Marsh M, Helenius A. (2006). Virus entry: open sesame. Cell 124:729–40.
  • Mcguire MJ, Gray BP, Li S, et al. (2014). Identification and characterization of a suite of tumor targeting peptides for non-small cell lung cancer. Sci Rep 4:4480.
  • Merzlyak A, Indrakanti S, Lee S. (2009). Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano Lett 9:7.
  • Milletti F. (2012). Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17:850–60.
  • Mohan K, Weiss GA. (2016). Chemically modifying viruses for diverse applications. ACS Chem Biol 11:1167–79.
  • Moona JS, Kimb WG, Kimc C, et al. (2015). M13 bacteriophage-based self-assembly structures and their functional capabilities. Mini-Rev Org Chem 12:11.
  • Munke A, Persson J, Weiffert T, et al. (2017). Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication. Proc Natl Acad Sci USA 114:6444–9.
  • Nakamura M, Tsumoto K, Ishimura K, et al. (2001). A visualization method of filamentous phage infection and phage-derived proteins in escherichia coli using biotinylated phages. Biochem Bioph Res Co 289:252–6.
  • Nakamura M, Tsumoto K, Ishimura K, et al. (2002). The effect of an agglutogen on virus infection: biotinylated filamentous phages and avidin as a model. FEBS Lett 520:77–80.
  • Nam KT, Kim DW, Yoo PJ, et al. (2006). Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–8.
  • Newton JR, Kelly KA, Mahmood U, et al. (2006). In vivo selection of phage for the optical imaging of PC-3 human prostate carcinoma in mice. Neoplasia 8:772–80.
  • Ngweniform P, Abbineni G, Cao B, et al. (2009). Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: a novel nanocarrier for targeted drug delivery. Small 5:1963–9.
  • Nicolas J, Mura S, Brambilla D, et al. (2013). Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–235.
  • Noble GT, Stefanick JF, Ashley JD, et al. (2014). Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 32:32–45.
  • Oh D, Qi J, Han B, et al. (2014). M13 virus-directed synthesis of nanostructured metal oxides for lithium-oxygen batteries. Nano Lett 14:4837–45.
  • Osdol W, Fujimori K, Weinstein J. (1991). An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a “binding site barrier”. Cancer Res 51:9.
  • Pasqualini R, Ruoslahti E. (1996). Organ targeting in vivo using phage display peptide libraries. Nature 380:364–6.
  • Pastorino F, Brignole C, Di Paolo D, et al. (2006). Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy . Cancer Res 66:10073–82.
  • Pearce TR, Shroff K, Kokkoli E. (2012). Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv Mater Weinheim 24:3803–22.
  • Peer D, Karp JM, Hong S, et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–60.
  • Petrenko VA, Jayanna P. (2014). Phage protein-targeted cancer nanomedicines. FEBS Lett 588:341–9.
  • Petrenko VA, Gillespie JW. 2017. Self-navigating drug delivery nanovehicles driven by polyvalent multifunctional phages and their promiscuous proteins. Techconnect World Innovation Conference and Expo Techconnect Briefs, 14–17 May 2017. Washington, DC, Maryland: TechConnect.org, 134–137.
  • Pires DP, Cleto S, Sillankorva S, et al. (2016). Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev 80:523–43.
  • Poul MA, Marks JD. (1999). Targeted gene delivery to mammalian cells by filamentous bacteriophage. J Mol Biol 288:203–11.
  • Prausnitz MR, Langer R. (2008). Transdermal drug delivery. Nat Biotechnol 26:1261–8.
  • Qadir MI. (2015). Review: phage therapy: a modern tool to control bacterial infections. Pak J Pharm Sci 28:265–70.
  • Qiu P, Qu X, Brackett DJ, et al. (2013). Silica-based branched hollow microfibers as a biomimetic extracellular matrix for promoting tumor cell growth in vitro and in vivo. Adv Mater Weinheim 25:2492–6.
  • Qiu P, Mao C. (2010). Biomimetic branched hollow fibers templated by self-assembled fibrous polyvinylpyrrolidone structures in aqueous solution. ACS Nano 4:1573–9.
  • Rajala A, Wang Y, Zhu Y, et al. (2014). Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett 14:5257–63.
  • Rakover IS, Zabavnik N, Kopel R, et al. (2010). Antigen-specific therapy of EAE via intranasal delivery of filamentous phage displaying a myelin immunodominant epitope. J Neuroimmunol 225:68–76.
  • Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, et al. (2012). Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages. Proc Natl Acad Sci USA 109:18482–7.
  • Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, et al. (2013). Nuclear localization signals in phage terminal proteins provide a novel gene delivery tool in mammalian cells. Commun Integr Biol 6:e22829.
  • Redrejo-Rodríguez M, Salas M. (2014). Multiple roles of genome-attached bacteriophage terminal proteins. Virology 468-470:322–9.
  • Reichert JM. (2008). Monoclonal antibodies as innovative therapeutics. Curr Pharm Biotechnol 9:423–30.
  • Ruoslahti E. (2012). Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater Weinheim 24:3747–56.
  • Ryvolova M, Drbohlavova J, Smerkova K, et al. (2013). Nanoparticles-based carriers for gene therapy and drug delivery. In: Mishra AK, ed. Nanomedicine for drug delivery and therapeutics. Hoboken (NJ): Wiley, 471–92.
  • Scott JK, Smith GP. (1990). Searching for peptide ligands with an epitope library. Science 249:386–90.
  • Sergeeva A, Kolonin MG, Molldrem JJ, et al. (2006). Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 58:1622–54.
  • Shukla S, Ablack AL, Wen AM, et al. (2013). Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle Potato virus X. Mol Pharm 10:33–42.
  • Sievers EL, Senter PD. (2013). Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29.
  • Skurnik M, Strauch E. (2006). Phage therapy: facts and fiction. Int J Med Microbiol 296:5–14.
  • Slopek S, Durlakowa I, Weber-Dabrowska B, et al. (1982). Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch Immunol Ther Ex 31:267–91.
  • Smith GP. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–17.
  • Smith GP, Petrenko VA. (1997). Phage display. Chem Rev 97:391–410.
  • Staquicini DI, Rangel R, Guzman-Rojas L, et al. (2017). Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting. Sci Rep 7:4243.
  • Stefanick JF, Ashley JD, Kiziltepe T, et al. (2013). A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes. ACS Nano 7:2935–47.
  • Stoneham CA, Hollinshead M, Hajitou A. (2012). Clathrin-mediated endocytosis and subsequent endo-lysosomal trafficking of adeno-associated virus/phage. J Biol Chem 287:35849–59.
  • Stopar D, Spruijt RB, Wolfs CJ, et al. (2003). Protein-lipid interactions of bacteriophage M13 major coat protein. Biochim Biophys Acta 1611:5–15.
  • Strebhardt K, Ullrich A. (2008). Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–80.
  • Suthiwangcharoen N, Li T, Li K, et al. (2011). M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Res 4:483–93.
  • Svensen N, Walton JG, Bradley M. (2012). Peptides for cell-selective drug delivery. Trends Pharmacol Sci 33:186–92.
  • Tandle A, Hanna E, Lorang D, et al. (2009). Tumor vasculature-targeted delivery of tumor necrosis factor-alpha. Cancer 115:128–39.
  • Torchilin VP. (2005). Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–60.
  • Trepel M, Stoneham CA, Eleftherohorinou H, et al. (2009). A heterotypic bystander effect for tumor cell killing after adeno-associated virus/phage-mediated, vascular-targeted suicide gene transfer. Mol Cancer Ther 8:2383–91.
  • Tsafa E, Al-Bahrani M, Bentayebi K, et al. (2016). The natural dietary genistein boosts bacteriophage-mediated cancer cell killing by improving phage-targeted tumor cell transduction. Oncotarget 7:52135–49.
  • Umlauf BJ, Mercedes JS, Chung CY, et al. (2014). Identification of a novel lysosomal trafficking peptide using phage display biopanning coupled with endocytic selection pressure. Bioconjugate Chem 25:1829–37.
  • Vigevani L, Valcárcel J. (2014). Molecular biology. A splicing magic bullet. Science 345:624–5.
  • Vladimir P. (2012). Optimization of landscape phage fusion protein-modified polymeric Peg-Pe micelles for improved breast cancer cell targeting. J Nanomed Nanotechnol Suppl 4:008.
  • Wang AZ, Langer R, Farokhzad OC. (2012). Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–98.
  • Wang J, Wang L, Li X, et al. (2013). Virus activated artificial ECM induces the osteoblastic differentiation of mesenchymal stem cells without osteogenic supplements. Sci Rep 3:1242.
  • Wang J, Yang M, Zhu Y, et al. (2014). Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Adv Mater Weinheim 26:4961–6.
  • Wang LF, Yu M. (2004). Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Curr Drug Targets 5:1–15.
  • Wang L, Hu Y, Li W, et al. (2016). Identification of a peptide specifically targeting ovarian cancer by the screening of a phage display peptide library. Oncol Lett 11:4022–6.
  • Wang T, Petrenko VA, Torchilin VP. (2010). Paclitaxel-loaded polymeric micelles modified with MCF-7 cell-specific phage protein: enhanced binding to target cancer cells and increased cytotoxicity. Mol Pharm 7:1007–14.
  • Wen AM, Rambhia PH, French RH, et al. (2013). Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. J Biol Phys 39:301–25.
  • Westwater C, Kasman LM, Schofield DA, et al. (2003). Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother 47:1301–7.
  • Yacoby I, Bar H, Benhar I. (2007). Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob Agents Chemother 51:2156–63.
  • Yacoby I, Shamis M, Bar H, et al. (2006). Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrob Agents Chemother 50:2087–97.
  • Yao VJ, Ozawa MG, Trepel M, et al. (2005). Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. Am J Pathol 166:625–36.
  • Yata T, Lee KY, Dharakul T, et al. (2014). Hybrid nanomaterial complexes for advanced phage-guided gene delivery. Mol Ther Nucleic Acids 3:e185.
  • Yokoyama-Kobayashi M, Kato S. (1993). Recombinant f1 phage particles can transfect monkey COS-7 cells by DEAE dextran method. Biochem Biophys Res Commun 192:935–9.
  • Yokoyama-Kobayashi M, Kato S. (1994). Recombinant f1 phage-mediated transfection of mammalian cells using lipopolyamine technique. Anal Biochem 223:130–4.
  • Yoo SY, Jin HE, Choi DS, et al. (2016). M13 bacteriophage and adeno-associated virus hybrid for novel tissue engineering material with gene delivery functions. Adv Healthc Mater 5:88–93.
  • Zhu H, Cao B, Zhen Z, et al. (2011). Controlled growth and differentiation of MSCs on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries. Biomaterials 32:4744–52.