2,114
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium

, , , , , , & show all
Pages 178-186 | Received 13 Nov 2017, Accepted 25 Dec 2017, Published online: 04 Jan 2018

References

  • Appelhans D, Komber H, Quadir MA, et al. (2009). Hyperbranched PEI with various oligosaccharide architectures: synthesis, characterization, ATP complexation, and cellular uptake properties. Biomacromolecules 10:1114–24.
  • Bertrand N, Wu J, Xu X, et al. (2014). Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Delivery Rev 66:2–25.
  • Boisselier E, Astruc D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–82.
  • Brigger I, Dubernet C, Couvreur P. (2002). Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–51.
  • Cai H, An X, Cui J, et al. (2013). Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5:1722–31.
  • Chen C, Zhou BQ, Zhu XY, et al. (2016). Branched polyethyleneimine modified with hyaluronic acid via a PEG spacer for targeted anticancer drug delivery. RSC Adv 6:9232–9.
  • Chen H, Wang GD, Tang W, et al. (2014). Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Adv Mater 26:6761–6.
  • Chen Q, Li K, Wen S, et al. (2013). Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 34:5200–9.
  • Chen Q, Wang H, Liu H, et al. (2015). Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 87:3949–56.
  • Gao XH, Cui YY, Levenson RM, et al. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–76.
  • Guo Z, Gao M, Song M, et al. (2016). Superfluorinated PEI derivative coupled with Tc-99m for ASGPR targeted F-19 MRI/SPECT/PA tri-modality imaging. Adv Mater 28:5898–906.
  • Hoebel S, Loos A, Appelhans D, et al. (2011). Maltose- and maltotriose-modified, hyperbranched poly(ethylene imine)s (OM-PEIs): physicochemical and biological properties of DNA and SiRNA complexes. J. Controlled Release 149:146–58.
  • Hu Y, Li J, Yang J, et al. (2015a). Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors. Biomater Sci 3:721–32.
  • Hu Y, Wang R, Li J, et al. (2017). Facile synthesis of lactobionic acid‐targeted iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of an orthotopic model of human hepatocellular carcinoma. Part Part Syst Charact 34:1600113.
  • Hu Y, Wang R, Wang S, et al. (2016). Multifunctional Fe3O4 @ Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors. Sci Rep 6:28325.
  • Hu Y, Yang J, Wei P, et al. (2015b). Facile synthesis of hyaluronic acid-modified Fe3O4/Au composite nanoparticles for targeted dual mode MR/CT imaging of tumors. J Mater Chem B 3:9098–108.
  • Kim BH, Lee N, Kim H, et al. (2011). Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T-1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–31.
  • Kim D, Park S, Lee JH, et al. (2007). Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J Am Chem Soc 129:7661–5.
  • Kong LD, Qiu JR, Sun WJ, et al. (2017). Multifunctional PEI-entrapped gold nanoparticles enable efficient delivery of therapeutic siRNA into glioblastoma cells. Biomater Sci 5:258–66.
  • Laurent S, Forge D, Port M, et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev 108:2064–110.
  • Lee JY, Carugo D, Crake C, et al. (2015). Nanoparticle-loaded protein-polymer nanodroplets for improved stability and conversion efficiency in ultrasound imaging and drug delivery. Adv Mater 27:5484–92.
  • Lee N, Choi SH, Hyeon T. (2013). Nano-sized CT contrast agents. Adv Mater 25:2641–60.
  • Li J, He Y, Sun W, et al. (2014). Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35:3666–77.
  • Li J, Hu Y, Yang J, et al. (2015a). Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 38:10–21.
  • Li J, Zheng L, Cai H, et al. (2013). Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34:8382–92.
  • Li T, Murphy S, Kiselev B, et al. (2015b). A new interleukin-13 amino-coated gadolinium metallofullerene nanoparticle for targeted MRI detection of glioblastoma tumor cells. J Am Chem Soc 137:7881–8.
  • Liong M, Lu J, Kovochich M, et al. (2008). Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. Acs Nano 2:889–96.
  • Liu H, Wang H, Xu Y, et al. (2014). Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl Mater Interfaces 6:6944–53.
  • Liu Y, Ai K, Lu L. (2012). Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res 45:1817–27.
  • Moon SH, Yang BY, Kim YJ, et al. (2016). Development of a complementary PET/MR dual-modal imaging probe for targeting prostate-specific membrane antigen (PSMA). Nanomed- Nanotechnol Biol Med 12:871–9.
  • Nahrendorf M, Zhang H, Hembrador S, et al. (2008). Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–87.
  • Peng C, Qin J, Zhou B, et al. (2013). Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym Chem 4:4412–24.
  • Shi H, Wang Z, Huang C, et al. (2016). A functional CT contrast agent for in vivo imaging of tumor hypoxia. Small 12:3995–4006.
  • Tong W, Cao X, Wen S, et al. (2012). Enhancing the specificity and efficiency of polymerase chain reaction using polyethyleneimine-based derivatives and hybrid nanocomposites. Int J Nanomed 7:1069–78.
  • Veiseh O, Gunn JW, Zhang M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304.
  • Wang M, Thanou M. (2010). Targeting nanoparticles to cancer. Pharmacol Res 62:90–9.
  • Wang X, Chen HR, Zheng YY, et al. (2013). Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials 34:2057–68.
  • Wen S, Li K, Cai H, et al. (2013a). Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 34:1570–80.
  • Wen S, Zheng F, Shen M, Shi X. (2013b). Synthesis of polyethyleneimine-stabilized gold nanoparticles for colorimetric sensing of heparin. Colloids Surf A 419:80–6.
  • Xu X, Zhao L, Li X, et al. (2017). Targeted tumor SPECT/CT dual mode imaging using multifunctional RGD-modified low generation dendrimer-entrapped gold nanoparticles. Biomater Sci 5:2393–7.
  • Yin Q, Yap FY, Yin L, et al. (2013). Poly(iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging. J Am Chem Soc 135:13620–3.
  • Zhou B, Xiong Z, Zhu J, et al. (2016a). PEGylated polyethylenimine-entrapped gold nanoparticles loaded with gadolinium for dual-mode CT/MR imaging applications. Nanomedicine 11:1639–52.
  • Zhou B, Yang J, Peng C, et al. (2016b). PEGylated polyethylenimine-entrapped gold nanoparticles modified with folic acid for targeted tumor CT imaging. Colloids Surf B 140:489–96.
  • Zhou B, Zhao L, Shen M, et al. (2017). A multifunctional polyethylenimine-based nanoplatform for targeted anticancer drug delivery to tumors in vivo. J Mater Chem B 5:1542–50.
  • Zhou B, Zheng L, Peng C, et al. (2014). Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl Mater Interfaces 6:17190–9.