4,356
Views
96
CrossRef citations to date
0
Altmetric
Research Article

Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds

, , , , &
Pages 241-255 | Received 20 Oct 2017, Accepted 05 Jan 2018, Published online: 15 Jan 2018

References

  • Abels ER, Breakefield XO. (2016). Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 36:301–12.
  • Amin MA, Rabquer BJ, Mansfield PJ, et al. (2010). Interleukin 18 induces angiogenesis in vitro and in vivo via Src and Jnk kinases. Ann Rheum Dis 69:2204–12.
  • Andreu Z, Yanez-Mo M. (2014). Tetraspanins in extracellular vesicle formation and function. Front Immunol 5:442.
  • Bergan JJ, Schmid-Schonbein GW, Smith PD, et al. (2006). Chronic venous disease. N Engl J Med 355:488–98.
  • Blandino A, Macias M, Cantero D. (1999). Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics. J Biosci Bioeng 88:686–9.
  • Boelens MC, Wu TJ, Nabet BY, et al. (2014). Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159:499–513.
  • Burgess DJ. (2014). Signalling: vesicle vehicles of genetic information. Nat Rev Genet 15:514.
  • Carboni JM, Wittman M, Yang Z, et al. (2009). BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther 8:3341–9.
  • Cesana M, Cacchiarelli D, Legnini I, et al. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–69.
  • Chaudhuri O, Koshy ST, Branco Da Cunha C, et al. (2014). Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13:970–8.
  • Ding GL, Wang FF, Shu J, et al. (2012). Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 61:1133–42.
  • Dunn LL, Simpson PJ, Prosser HC, et al. (2014). A critical role for thioredoxin-interacting protein in diabetes-related impairment of angiogenesis. Diabetes 63:675–87.
  • El-Andaloussi S, Lee Y, Lakhal-Littleton S, et al. (2012). Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 7:2112–26.
  • Eming SA, Brachvogel B, Odorisio T, Koch M. (2007). Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem 42:115–70.
  • Eming SA, Martin P, Tomic-Canic M. (2014). Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6:265sr6.
  • Eubank TD, Roberts R, Galloway M, et al. (2004). GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice. Immunity 21:831–42.
  • Flegg JA, Menon SN, Maini PK, Mcelwain DL. (2015). On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process. Front Physiol 6:262.
  • Frank DN, Wysocki A, Specht-Glick DD, et al. (2009). Microbial diversity in chronic open wounds. Wound Repair Regen 17:163–72.
  • Frantz S, Vincent KA, Feron O, Kelly RA. (2005). Innate immunity and angiogenesis. Circ Res 96:15–26.
  • Gao Y, Wu F, Zhou J, et al. (2014). The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res 42:13799–811.
  • Ghazal S, Mckinnon B, Zhou J, et al. (2015). H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med 7:996–1003.
  • Grotendorst GR, Martin GR, Pencev D, et al. (1985). Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. J Clin Invest 76:2323–9.
  • Guo P, Yang J, Jia D, et al. (2016). ICAM-1-Targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for Triple Negative Breast Cancer. Theranostics 6:1–13.
  • Guo SC, Tao SC, Yin WJ, et al. (2017). Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics 7:81–96.
  • Hwang DW, Choi H, Jang SC, et al. (2015). Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using (99m)Tc-HMPAO. Sci Rep 5:15636.
  • Icli B, Nabzdyk CS, Lujan-Hernandez J, et al. (2016). Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. J Mol Cell Cardiol 91:151–9.
  • Iwakura A, Tabata Y, Tamura N, et al. (2001). Gelatin sheet incorporating basic fibroblast growth factor enhances healing of devascularized sternum in diabetic rats. Circulation 104:I325–9.
  • Jang SC, Kim OY, Yoon CM, et al. (2013). Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7:7698–710.
  • Jeong HJ, Lee SA, Moon PD, et al. (2006). Alginic acid has anti-anaphylactic effects and inhibits inflammatory cytokine expression via suppression of nuclear factor-kappaB activation. Clin Exp Allergy 36:785–94.
  • Jia P, Cai H, Liu X, et al. (2016). Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett 381:359–69.
  • Jo W, Kim J, Yoon J, et al. (2014). Large-scale generation of cell-derived nanovesicles. Nanoscale 6:12056–64.
  • Kao HK, Chen B, Murphy GF, et al. (2011). Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialization, contraction, and angiogenesis. Ann Surg 254:1066–74.
  • Kolb EA, Gorlick R, Lock R, et al. (2011). Initial testing (stage 1) of the IGF-1 receptor inhibitor BMS-754807 by the pediatric preclinical testing program. Pediatr Blood Cancer 56:595–603.
  • Kourembanas S. (2015). Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 77:13–27.
  • Kuo YR, Wang CT, Wang FS, et al. (2009). Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen 17:522–30.
  • Lai HJ, Kuan CH, Wu HC, et al. (2014). Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10:4156–66.
  • Larger E, Marre M, Corvol P, Gasc JM. (2004). Hyperglycemia-induced defects in angiogenesis in the chicken chorioallantoic membrane model. Diabetes 53:752–61.
  • Lee J, Saw PE, Gujrati V, et al. (2016). Mono-arginine cholesterol-based small lipid nanoparticles as a systemic siRNA delivery platform for effective cancer therapy. Theranostics 6:192–203.
  • Lee KY, Mooney DJ. (2012). Alginate: properties and biomedical applications. Prog Polym Sci 37:106–26.
  • Liu D, Yang F, Xiong F, Gu N. (2016). The smart drug delivery system and its clinical potential. Theranostics 6:1306–23.
  • Liu ZJ, Velazquez OC. (2008). Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal 10:1869–82.
  • Lu Y, Liu YH, Fu W, et al. (2016). Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-β1 signaling. FASEB 31:954–964. doi: 10.1096/fj.201600722R
  • Lunavat TR, Jang SC, Nilsson L, et al. (2016). RNAi delivery by exosome-mimetic nanovesicles – implications for targeting c-Myc in cancer. Biomaterials 102:231–8.
  • Maas SL, Breakefield XO, Weaver AM. (2017). Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27:172–88.
  • Marrotte EJ, Chen DD, Hakim JS, Chen AF. (2010). Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J Clin Invest 120:4207–19.
  • Mendez JJ, Ghaedi M, Sivarapatna A, et al. (2015). Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo. Biomaterials 40:61–71.
  • Morton LM, Phillips TJ. (2016). Wound healing and treating wounds: Differential diagnosis and evaluation of chronic wounds. J Am Acad Dermatol 74:589–605. quiz 605-6.
  • Mulcahy LA, Pink RC, Carter DR. (2014). Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:24641.
  • Nakamura Y, Ishikawa H, Kawai K, et al. (2013). Enhanced wound healing by topical administration of mesenchymal stem cells transfected with stromal cell-derived factor-1. Biomaterials 34:9393–400.
  • Oh K, Kim SR, Kim DK, et al. (2015). In vivo differentiation of therapeutic insulin-producing cells from bone marrow cells via extracellular vesicle-mimetic Nanovesicles. ACS Nano 9:11718–27.
  • Ohno S, Kuroda M. (2016). Exosome-mediated targeted delivery of miRNAs. Methods Mol Biol 1448:261–70.
  • Pachnis V, Belayew A, Tilghman SM. (1984). Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci USA 81:5523–7.
  • Peer D, Karp JM, Hong S, et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech 2:751–60.
  • Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E. (2012). The exosome-secretory pathway transports amyloid precursor protein carboxyl terminal fragments from the cell into the brain extracellular space. J Biol Chem 287:43108–15.
  • Qu L, Ding J, Chen C, et al. (2016). Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29:653–68.
  • Robbins PD, Morelli AE. (2014). Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14:195–208.
  • Roche ED, Renick PJ, Tetens SP, et al. (2012). Increasing the presence of biofilm and healing delay in a porcine model of MRSA-infected wounds. Wound Repair Regen 20:537–43.
  • Ruttermann M, Maier-Hasselmann A, Nink-Grebe B, Burckhardt M. (2013). Local treatment of chronic wounds: in patients with peripheral vascular disease, chronic venous insufficiency, and diabetes. Dtsch Arztebl Int 110:25–31.
  • Salmena L, Poliseno L, Tay Y, et al. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–8.
  • Schoneberg J, Lee IH, Iwasa JH, Hurley JH. (2017). Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol 18:5–17.
  • Shiojima I, Walsh K. (2002). Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90:1243–50.
  • Su R, Wang C, Feng H, et al. (2016). Alteration in expression and methylation of IGF2/H19 in Placenta and umbilical cord blood are associated with Macrosomia exposed to intrauterine Hyperglycemia. PLoS One 11:e0148399.
  • Sun JY, Zhao X, Illeperuma WR, et al. (2012). Highly stretchable and tough hydrogels. Nature 489:133–6.
  • Tao SC, Guo SC, Li M, et al. (2017a). Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl Med 6:736–47.
  • Tao SC, Guo SC, Zhang CQ. (2017b). Platelet-derived extracellular vesicles: an emerging therapeutic approach. Int J Biol Sci 13:828–34.
  • Tao SC, Yuan T, Rui BY, et al. (2017c). Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics 7:733–50.
  • Tao SC, Yuan T, Zhang YL, et al. (2017d). Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 7:180–95.
  • Tarnuzzer RW, Schultz GS. (1996). Biochemical analysis of acute and chronic wound environments. Wound Repair Regen 4:321–5.
  • Vader P, Mol EA, Pasterkamp G, Schiffelers RM. (2016). Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 106:148–156. doi: 10.1016/j.addr.2016.02.006
  • Villasante A, Marturano-Kruik A, Ambati SR, et al. (2016). Recapitulating the size and cargo of tumor exosomes in a tissue-engineered model. Theranostics 6:1119–30.
  • Vind BF, Birk JB, Vienberg SG, et al. (2012). Hyperglycaemia normalises insulin action on glucose metabolism but not the impaired activation of AKT and glycogen synthase in the skeletal muscle of patients with type 2 diabetes. Diabetologia 55:1435–45.
  • Wang G, Dinkins M, He Q, et al. (2012). Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 287:21384–95.
  • Werdin F, Tenenhaus M, Rennekampff HO. (2008). Chronic wound care. Lancet 372:1860–2.
  • Wittman MD, Carboni JM, Yang Z, et al. (2009). Discovery of a 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitor (BMS-754807) of insulin-like growth factor receptor (IGF-1R) kinase in clinical development. J Med Chem 52:7360–3.
  • Xing H, Hwang K, Lu Y. (2016). Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 6:1336–52.
  • Xu J, Zgheib C, Hu J, et al. (2014). The role of microRNA-15b in the impaired angiogenesis in diabetic wounds. Wound Repair Regen 22:671–7.
  • Yang T, Zhao P, Rong Z, et al. (2016). Anti-tumor efficiency of lipid-coated cisplatin nanoparticles co-loaded with MicroRNA-375. Theranostics 6:142–54.
  • Yoon CH, Choi YE, Koh SJ, et al. (2014). High glucose-induced jagged 1 in endothelial cells disturbs notch signaling for angiogenesis: a novel mechanism of diabetic vasculopathy. J Mol Cell Cardiol 69:52–66.
  • Yu H, Guo C, Feng B, et al. (2016). Triple-Layered pH-Responsive Micelleplexes loaded with siRNA and Cisplatin Prodrug for NF-Kappa B targeted treatment of metastatic breast cancer. Theranostics 6:14–27.
  • Zhang J, Li S, Li L, et al. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24.
  • Zhang J, Liu X, Li H, et al. (2016a). Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther 7:136.
  • Zhang L, Sun Z, Ren P, et al. (2017). Localized delivery of shRNA against PHD2 protects the heart from acute myocardial infarction through ultrasound-targeted cationic microbubble destruction. Theranostics 7:51–66.
  • Zhang Y, Xu Y, Feng L, et al. (2016b). Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers. Oncotarget 7:64148–67.
  • Zhao S, Li L, Wang H, et al. (2015). Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials 53:379–91.