5,232
Views
58
CrossRef citations to date
0
Altmetric
Review Article

Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives

, , , , , & show all
Pages 278-292 | Received 09 Nov 2017, Accepted 05 Jan 2018, Published online: 15 Jan 2018

References

  • Akiyoshi K, Deguchi S, Moriguchi N, et al. (1993). Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–8.
  • Akiyoshi K, Deguchi S, Tajima H, et al. (1997). Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules 30:857–61.
  • Akiyoshi K, Kang E-C, Kurumada S, et al. (2000). Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly(N-isopropylacrylamides). Macromolecules 33:3244–9.
  • Akiyoshi K, Kobayashi S, Shichibe S, et al. (1998). Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release 54:313–20.
  • Akiyoshi K, Sunamoto J. (1996). Supramolecular assembly of hydrophobized polysaccharides. Supramol Sci 3:157–63.
  • Aoki M, Ueda S, Nishikawa H, et al. (2009). Antibody responses against NY-ESO-1 and HER2 antigens in patients vaccinated with combinations of cholesteryl pullulan (CHP)-NY-ESO-1 and CHP-HER2 with OK-432. Vaccine 27:6854–61.
  • Asayama W, Sawada SI, Taguchi H, et al. (2008). Comparison of refolding activities between nanogel artificial chaperone and GroEL systems. Int J Biol Macromol 42:241–6.
  • Asmarandei I, Fundueanu G, Cristea M, et al. (2013). Thermo- and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/carboxymethyl pullulan network for drug delivery. J Polym Res 20:13.
  • Ayame H, Morimoto N, Akiyoshi K. (2008). Self-assembled cationic nanogels for intracellular protein delivery. Bioconjug Chem 19:882–90.
  • Bae BC, Li F, Ling D, et al. (2010). Self-organized nanogel from pullulan/pheophorbide – a conjugate as a macromolecular photodynamic agent. J Porphyrins Phthalocyanines 14:851–8.
  • Bae BC, Na K. (2010). Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials 31:6325–35.
  • Na K, Bae YH. (2002). Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro. Pharm Res 19:681–8.
  • Benitez A, Yates TJ, Lopez LE, et al. (2011). Targeting hyaluronidase for cancer therapy: antitumor activity of sulfated hyaluronic acid in prostate cancer cells. Cancer Res 71:4085–95.
  • Berndt I, Popescu C, Wortmann F-J, et al. (2006). Mechanics versus thermodynamics: swelling in multiple-temperature-sensitive core–shell microgels. Angew Chem Int Ed 45:1081–5.
  • Bertrand O, Gohy JF. (2017). Photo-responsive polymers: synthesis and applications. Polym Chem 8:52–73.
  • Blackburn WH, Lyon LA. (2008). Size controlled synthesis of monodispersed, core/shell nanogels. Colloid Polym Sci 286:563–9.
  • Boridy S, Takahashi H, Akiyoshi K, et al. (2009). The binding of pullulan modified cholesteryl nanogels to Abeta oligomers and their suppression of cytotoxicity. Biomaterials 30:5583–91.
  • Bruneel D, Schacht E. (1994). Chemical modification of pullulan: 3. Succinoylation. Polymer 35:2656–8.
  • Chacko RT, Ventura J, Zhuang JM, et al. (2012). Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64:836–51.
  • Chan MN, Lux J, Nishimura T, et al. (2015). Long-lasting and efficient tumor imaging using a high relaxivity polysaccharide nanogel magnetic resonance imaging contrast agent. Biomacromolecules 16:2964–71.
  • Chen SY, Zhao XR, Chen JY, et al. (2010). Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug Chem 21:979–87.
  • Cinay GE, Erkoc P, Alipour M, et al. (2017). Nanogel-integrated pH-responsive composite hydrogels for controlled drug delivery. ACS Biomater Sci Eng 3:370–80.
  • Derfus AM, Chan WCW, Bhatia SN. (2004). Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961.
  • Ferreira SA, Coutinho PJG, Gama FM. (2010). Self-assembled nanogel made of mannan: synthesis and characterization. Langmuir 26:11413–20.
  • Ferreira SA, Coutinho PJG, Gama FM. (2011). Synthesis and characterization of self-assembled nanogels made of pullulan. Materials (Basel) 4:601–20.
  • Fujioka-Kobayashi M, Ota MS, Shimoda A, et al. (2012). Cholesteryl group- and acryloyl group-bearing pullulan nanogel to deliver BMP2 and FGF18 for bone tissue engineering. Biomaterials 33:7613–20.
  • Fukuyama Y, Yuki Y, Katakai Y, et al. (2015). Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques. Mucosal Immunol 8:1144–53.
  • Gao M, Toita S, Sawada S, et al. (2013). Cyclodextrin triggered dimensional changes of polysaccharide nanogel integrated hydrogels at nanometer resolution. Soft Matter 9:5178–85.
  • Gu XG, Schmitt M, Hiasa A, et al. (1998). A novel hydrophobized polysaccharide/oncoprotein complex vaccine induces in vitro and in vivo cellular and humoral immune responses against HER2-expressing murine sarcomas. Cancer Res 58:3385–90.
  • Gupta M, Gupta AK. (2004). In vitro cytotoxicity studies of hydrogel pullulan nanoparticles prepared by AOT/n-hexane micellar system. J Pharm Pharm Sci 7:38–46.
  • Hasegawa U, Nomura SIM, Kaul SC, et al. (2005). Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem Biophys Res Commun 331:917–21.
  • Hasegawa U, Sawada S, Shimizu T, et al. (2009). Raspberry-like assembly of cross-linked nanogels for protein delivery. J Control Release 140:312–17.
  • Hashimoto Y, Mukai S, Sawada S, et al. (2015). Nanogel tectonic porous gel loading biologics, nanocarriers, and cells for advanced scaffold. Biomaterials 37:107–15.
  • Hashimoto Y, Mukai S, Sawada S, et al. (2016). Advanced artificial extracellular matrices using amphiphilic nanogel-cross-linked thin films to anchor adhesion proteins and cytokines. ACS Biomater Sci Eng 2:375–84.
  • Hayashi C, Hasegawa U, Saita Y, et al. (2009). Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor. J Cell Physiol 220:1–7.
  • Hirakura T, Nomura Y, Aoyama Y, et al. (2004). Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones. Biomacromolecules 5:1804–9.
  • Hirakura T, Yasugi K, Nemoto T, et al. (2010). Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function. J Control Release 142:483–9.
  • Horwich AL. (2014). Molecular chaperones in cellular protein folding: the birth of a field. Cell 157:285–8.
  • Huang Y, Lapitsky Y. (2017). On the kinetics of chitosan/tripolyphosphate micro- and nanogel aggregation and their effects on particle polydispersity. J Colloid Interf Sci 486:27–37.
  • Hui LL, Chen Y. (2015). Tumor microenvironment: sanctuary of the devil. Cancer Lett 368:7–13.
  • Huo M, Yuan J, Tao L, et al. (2014). Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem UK 5:1519–28.
  • Ikeda K, Okada T, Sawada S, et al. (2006). Inhibition of the formation of amyloid beta-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Lett 580:6587–95.
  • Ikuta Y, Katayama N, Wang LJ, et al. (2002). Presentation of a major histocompatibility complex class 1-binding peptide by monocyte-derived dendritic cells incorporating hydrophobized polysaccharide-truncated HER2 protein complex: implications for a polyvalent immuno-cell therapy. Blood 99:3717–24.
  • Inomoto N, Osaka N, Suzuki T, et al. (2009). Interaction of nanogel with cyclodextrin or protein: study by dynamic light scattering and small-angle neutron scattering. Polymer 50:541–6.
  • Isobe M, Eikawa S, Uenaka A, et al. (2009). Correlation of high and decreased NY-ESO-1 immunity to spontaneous regression and subsequent recurrence in a lung cancer patient. Cancer Immun 9:8.
  • Jung SW, Jeong YI, Kim SH. (2003). Characterization of hydrophobized pullulan with various hydrophobicities. Int J Pharm 254:109–21.
  • Jung YS, Park W, Na K. (2013). Temperature-modulated noncovalent interaction controllable complex for the long-term delivery of etanercept to treat rheumatoid arthritis. J Control Release 171:143–51.
  • Jung YS, Park W, Na K. (2014). Succinylated polysaccharide-based thermosensitive polyelectrostatic complex for protein drug delivery. J Bioact Compat Polym 29:81–92.
  • Kageyama S, Kitano S, Hirayama M, et al. (2008). Humoral immune responses in patients vaccinated with 1-146 HER2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci 99:601–7.
  • Kageyama S, Wada H, Muro K, et al. (2013). Dose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patients. J Transl Med 11:246.
  • Kamolratanakul P, Hayata T, Ezura Y, et al. (2011). Nanogel-based scaffold delivery of Prostaglandin E-2 receptor-specific agonist in combination with a low dose of growth factor heals critical-size bone defects in mice. Arthritis Rheum 63:1021–33.
  • Katagiri K, Ohta K, Koumoto K, et al. (2013). Templated nucleation of hybrid iron oxide nanoparticles on polysaccharide nanogels. Colloid Polym Sci 291:1375–80.
  • Kato N, Hasegawa U, Morimoto N, et al. (2007). Nanogel-based delivery system enhances PGE2 effects on bone formation. J Cell Biochem 101:1063–70.
  • Kawabata R, Wada H, Isobe M, et al. (2007). Antibody response against NY-ESO-1 in CHP-NY-ESO-1 vaccinated patients. Int J Cancer 120:2178–84.
  • Kawada J, Wada H, Isobe M, et al. (2012). Heteroclitic serological response in esophageal and prostate cancer patients after NY-ESO-1 protein vaccination. Int J Cancer 130:584–92.
  • Kawasaki R, Sasaki Y, Akiyoshi K. (2017). Intracellular delivery and passive tumor targeting of a self-assembled nanogel containing carborane clusters for boron neutron capture therapy. Biochem Biophys Res Commun 483:147–52.
  • Kim S, Park KM, Ko JY, et al. (2008). Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety. Colloid Surface B 63:55–63.
  • Kitano D, Kageyama S, Nagata Y, et al. (2006). HER2-specificT-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan. Clin Cancer Res 12:7397–405.
  • Kobayashi H, Katakura O, Morimoto N, et al. (2009). Effects of cholesterol-bearing pullulan (CHP)-nanogels in combination with prostaglandin E1 on wound healing. J Biomed Mater Res 91B:55–60.
  • Kondo K, Kaji N, Toita S, et al. (2010). DNA separation by cholesterol-bearing pullulan nanogels. Biomicrofluidics 4:8.
  • Kong IG, Sato A, Yuki Y, et al. (2013). Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun 81:1625–34.
  • Kong SH, Noh YW, Suh YS, et al. (2015). Evaluation of the novel near-infrared fluorescence tracers pullulan polymer nanogel and indocyanine green/γ-glutamic acid complex for sentinel lymph node navigation surgery in large animal models. Gastric Cancer 18:55–64.
  • Kubinova S, Horak D, Sykova E. (2009). Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials 30:4601–9.
  • Kyogoku N, Ikeda H, Tsuchikawa T, et al. (2016). Time-dependent transition of the immunoglobulin G subclass and immunoglobulin E response in cancer patients vaccinated with cholesteryl pullulan-melanoma antigen gene-A4 nanogel. Oncol Lett 12:4493–504.
  • Lee I, Akiyoshi K. (2004). Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials 25:2911–18.
  • Luo C, Sun J, Liu D, et al. (2016). Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett 16:5401–8.
  • Luo L, Wang X, Chen Q, et al. (2017). A parenteral docetaxel-loaded lipid microsphere with decreased 7-epidocetaxel conversion in vitro and in vivo. Eur J Pharm Sci 109:638–49.
  • Ma XX, Zhang L, Fan DD, et al. (2017). Physicochemical properties and biological behavior of injectable crosslinked hydrogels composed of pullulan and recombinant human-like collagen. J Mater Sci 52:3771–85.
  • Maeda H, Kobayashi H, Miyahara T, et al. (2017). Effects of a polysaccharide nanogel-crosslinked membrane on wound healing. J Biomed Mater Res 105:544–50.
  • Manjappa AS, Goel PN, Vekataraju MP, et al. (2013). Is an alternative drug delivery system needed for docetaxel? The role of controlling epimerization in formulations and beyond. Pharm Res 30:2675–93.
  • Maya S, Sarmento B, Nair A, et al. (2013). Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr Pharm Des 19:7203–18.
  • Miyahara T, Nyan M, Shimoda A, et al. (2012). Exploitation of a novel polysaccharide nanogel cross-linking membrane for guided bone regeneration (GBR). J Tissue Eng Regen Med 6:666–72.
  • Miyazaki N, Tabata Y. (2009). Anti-tumor activity of carmofur water-solubilized by lactic acid oligomer-grafted pullulan nanogels. J Nanosci Nanotechnol 9:4797–804.
  • Molinos M, Carvalho V, Silva DM, et al. (2012). Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system. Biomacromolecules 13:517–27.
  • Morimoto N, Endo T, Iwasaki Y, et al. (2005a). Design of hybrid hydrogels with self-assembled nanogels as cross-linkers: interaction with proteins and chaperone-like activity. Biomacromolecules 6:1829–34.
  • Morimoto N, Endo T, Ohtomi M, et al. (2005b). Hybrid nanogels with physical and chemical cross-linking structures as nanocarriers. Macromol Biosci 5:710–16.
  • Morimoto N, Hirano S, Takahashi H, et al. (2013). Self-assembled ph-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14:56–63.
  • Morimoto N, Ohki T, Kurita K, et al. (2008a). Thermo-responsive hydrogels with nanodomains: rapid shrinking of a nanogel-crosslinking hydrogel of poly(N-isopropyl acrylamide). Macromol Rapid Commun 29:672–6.
  • Morimoto N, Qiu X-P, Winnik FM, et al. (2008b). Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecules 41:5985–7.
  • Morimoto N, Qiu XP, Winnik FM, et al. (2006). POLY 275-Temperature-dependence of the structure and association of cholesteryl-modified pullulan-poly-(N-isopropylacrylamide) hybrid nanogels. J Am Chem Soc 232:1.
  • Morimoto N, Winnik FM, Akiyoshi K. (2007). Botryoidal assembly of cholesteryl-pullulan/poly(N-isopropylacrylamide) nanogels. Langmuir 23:217–23.
  • Morimoto N, Winnik FM, Akiyoshi K. (2008c). POLY 187-Design of dual stimuli-responsive nanogels by self-assembly of thiol-terminated poly(n-isopropylacrylamide)-graft pullulan. J Am Chem Soc 236:1.
  • Mura S, Nicolas J, Couvreur P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003.
  • Muraoka D, Harada N, Hayashi T, et al. (2014). Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity. ACS Nano 8:9209–18.
  • Na K, Lee ES, Bae YH. (2003a). Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J Control Release 87:3–13.
  • Na K, Lee ES, Bae YH. (2007). Self-organized nanogels responding to tumor extracellular pH: pH-dependent drug release and in vitro cytotoxicity against MCF-7 cells. Bioconjug Chem 18:1568–74.
  • Na K, Lee TB, Park KH, et al. (2003b). Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18:165–73.
  • Na K, Park KM, Jo EA, et al. (2006). Self-organized pullulan/deoxycholic acid nanogels: physicochemical characterization and anti-cancer drug-releasing behavior. Biotechnol Bioprocess Eng 11:262–7.
  • Nagano K, Alles N, Mian AH, et al. (2011). The tumor necrosis factor type 2 receptor plays a protective role in tumor necrosis factor-alpha-induced bone resorption lacunae on mouse calvariae. J Bone Miner Metab 29:671–81.
  • Nagatomo D, Taniai M, Ariyasu H, et al. (2015). Cholesteryl pullulan encapsulated TNF-alpha nanoparticles are an effective mucosal vaccine adjuvant against influenza virus. Biomed Res Int 2015:15.
  • Nakahashi-Ouchida R, Yuki Y, Kiyono H. (2017). Development of a nanogel-based nasal vaccine as a novel antigen delivery system. Expert Rev Vaccines 16:1231–40.
  • Nakamura Y, Noguchi Y, Satoh E, et al. (2009). Spontaneous remission of a non-small cell lung cancer possibly caused by anti-NY-ESO-1 immunity. Lung Cancer 65:119–22.
  • Nishikawa T, Akiyoshi K, Sunamoto J. (1994). Supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the self-aggregate of cholesterol-bearing pullulan and.alpha.-Chymotrypsin. Macromolecules 27:7654–9.
  • Nishikawa T, Akiyoshi K, Sunamoto J. (1996). Macromolecular complexation between bovine serum albumin and the self-assembled hydrogel nanoparticle of hydrophobized polysaccharides. J Am Chem Soc 118:6110–15.
  • Nishimura T, Takara M, Mukai S, et al. (2016). A light sensitive self-assembled nanogel as a tecton for protein patterning materials. Chem Commun (Camb) 52:1222–5.
  • Nochi T, Yuki Y, Takahashi H, et al. (2010). Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9:572–78.
  • Noh YW, Kong SH, Choi DY, et al. (2012). Near-infrared emitting polymer nanogels for efficient sentinel lymph node mapping. ACS Nano 6:7820–31.
  • Nomura Y, Ikeda M, Yamaguchi N, et al. (2003). Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone. FEBS Lett 553:271–76.
  • Nomura Y, Sasaki Y, Takagi M, et al. (2005). Thermoresponsive controlled association of protein with a dynamic nanogel of hydrophobized polysaccharide and cyclodextrin: heat shock protein-like activity of artificial molecular chaperone. Biomacromolecules 6:447–52.
  • Offerman SC, Verma AVK, Telfer BA, et al. (2014). Ability of co-administered peptide liposome nanoparticles to exploit tumour acidity for drug delivery. RSC Advances 4:10779–90.
  • Okamoto T, Saito T, Tabata Y, et al. (2011). Immunological tolerance in a mouse model of immune-mediated liver injury induced by 16,16 dimethyl PGE2 and PGE2-containing nanoscale hydrogels. Biomaterials 32:4925–35.
  • Park KH, Kang D, Na K. (2006). Physicochemical characterization and carcinoma cell interaction of self-organized nanogels prepared from polysaccharide/biotin conjugates for development of anticancer drug carrier. J Microbiol Biotechnol 16:1369–76.
  • Pehlivan SB. (2013). Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm Res 30:2499–511.
  • Saito T, Wada H, Yamasaki M, et al. (2014). High expression of MAGE-A4 and MHC class I antigens in tumor cells and induction of MAGE-A4 immune responses are prognostic markers of CHP-MAGE-A4 cancer vaccine. Vaccine 32:5901–7.
  • Sasaki Y, Akiyoshi K. (2010). Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec 10:366–76.
  • Sasaki Y, Hirakura T, Sawada S, et al. (2011). Metal coordinative-crosslinked polysaccharide nanogels with redox sensitivity. Chem Lett 40:182–3.
  • Sasaki Y, Nomura Y, Sawada S, et al. (2010). Polysaccharide nanogel-cyclodextrin system as an artificial chaperone for in vitro protein synthesis of green fluorescent protein. Polym J 42:823–8.
  • Sato T, Alles N, Khan M, et al. (2015). Nanogel-crosslinked nanoparticles increase the inhibitory effects of W9 synthetic peptide on bone loss in a murine bone resorption model. Int J Nanomed 10:3459–73.
  • Sawada S, Akiyoshi K. (2010). Nano-encapsulation of lipase by self-assembled nanogels: induction of high enzyme activity and thermal stabilization. Macromol Biosci 10:353–8.
  • Sawada S, Nomura Y, Aoyama Y, et al. (2006). Heat shock protein-like activity of a nanogel artificial chaperone for citrate synthase. J Bioact Compat Polym 21:487–501.
  • Sawada S, Sasaki Y, Nomura Y, et al. (2011). Cyclodextrin-responsive nanogel as an artificial chaperone for horseradish peroxidase. Colloid Polym Sci 289:685–91.
  • Sekine Y, Endo H, Iwase H, et al. (2016). Nanoscopic structural investigation of physically cross-linked nanogels formed from self-associating polymers. J Phys Chem B 120:11996–2002.
  • Sekine Y, Moritani Y, Ikeda-Fukazawa T, et al. (2012). A hybrid hydrogel biomaterial by nanogel engineering: bottom-up design with nanogel and liposome building blocks to develop a multidrug delivery system. Adv Healthc Mater 1:722–8.
  • Sekine Y, Okazaki K, Ikeda-Fukazawa T, et al. (2014). Microrheology of polysaccharide nanogel-integrated system. Colloid Polym Sci 292:325–31.
  • Seo S, Lee CS, Jung YS, et al. (2012). Thermo-sensitivity and triggered drug release of polysaccharide nanogels derived from pullulan-g-poly(L-lactide) copolymers. Carbohydr Polym 87:1105–11.
  • Shakya AK, Sami H, Srivastava A, et al. (2010). Stability of responsive polymer–protein bioconjugates. Prog Polym Sci 35:459–86.
  • Shimizu T, Kishida T, Hasegawa U, et al. (2008). Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem Biophys Res Commun 367:330–5.
  • Shimoda A, Chen Y, Akiyoshi K. (2016). Nanogel containing electrospun nanofibers as a platform for stable loading of proteins. RSC Adv 6:40811–17.
  • Shimoda A, Sawada S-i, Akiyoshi K. (2014). Intracellular protein delivery using self-assembled amphiphilic polysaccharide nanogels. In: Prokop A, Iwasaki Y, Harada A, eds. Intracellular delivery II: fundamentals and applications. Dordrecht: Springer, 265–74.
  • Shimoda A, Sawada S, Akiyoshi K. (2011). Cell specific peptide-conjugated polysaccharide nanogels for protein delivery. Macromol Biosci 11:882–8.
  • Shimoda A, Sawada S, Kano A, et al. (2012a). Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery. Colloids Surf B Biointerfaces 99:38–44.
  • Shimoda A, Yamamoto Y, Sawada S-i, et al. (2012b). Biodegradable nanogel-integrated hydrogels for sustained protein delivery. Macromol Res 20:266–70.
  • Singh RS, Saini GK, Kennedy JF. (2008). Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–31.
  • Stylianopoulos T, Soteriou K, Fukumura D, et al. (2013). Cationic nanoparticles have superior transvascular flux into solid tumors: insights from a mathematical model. Ann Biomed Eng 41:68–77.
  • Sugawara A, Yamane S, Akiyoshi K. (2006). Nanogel-templated mineralization: polymer-calcium phosphate hybrid nanomaterials. Macromol Rapid Commun 27:441–6.
  • Akiyoshi K, Taniguchi I, Fukui H, Sunamoto J. (1996). Hydrogel nanoparticle formed by self-assembly of hydrophobized polysaccharide. Stabilization of adriamycin by complexation. Eur J Pharm Biopharm 42:5.
  • Tahara Y, Akiyoshi K. (2015). Current advances in self-assembled nanogel delivery systems for immunotherapy. Adv Drug Deliv Rev 95:65–76.
  • Tahara Y, Kosuge S, Sawada S, et al. (2013). Nanogel bottom-up gel biomaterials for protein delivery: photopolymerization of an acryloyl-modified polysaccharide nanogel macromonomer. React Funct Polym 73:958–64.
  • Tahara Y, Yasuoka J, Sawada S, et al. (2015). Effective CpG DNA delivery using amphiphilic cycloamylose nanogels. Biomater Sci 3:256–64.
  • Takahashi H, Akiyoshi K, Kuroda K. (2015). Affinity-mediated capture and release of amphiphilic copolymers for controlling antimicrobial activity. Chem Commun (Camb) 51:12597–600.
  • Takeda S, Takahashi H, Sawada S, et al. (2013). Amphiphilic nanogel of enzymatically synthesized glycogen as an artificial molecular chaperone for effective protein refolding. RSC Adv 3:25716–18.
  • Toita S, Hasegawa U, Koga H, et al. (2008). Protein-conjugated quantum dots effectively delivered into living cells by a cationic nanogel. J Nanosci Nanotechnol 8:2279–85.
  • Tsuchido Y, Sasaki Y, Sawada S, et al. (2015). Protein nanogelation using vitamin B-6-bearing pullulan: effect of zinc ions. Polym J 47:201–5.
  • Tsuji K, Hamada T, Uenaka A, et al. (2008). Induction of immune response against NY-ESO-1 by CHP-NY-ESO-1 vaccination and immune regulation in a melanoma patient. Cancer Immunol Immunother 57:1429–37.
  • Uenaka A, Wada H, Isobe M, Saika T, et al. (2007). T cell immunomonitoring and tumor responses in patients immunized with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein. Cancer Immun 7:9.
  • Varshosaz J, Taymouri S, Ghassami E. (2017). Supramolecular self-assembled nanogels a new platform for anticancer drug delivery. Curr Pharm Design. doi: 10.2174/1381612823666170710121900. [Epub ahead of print]
  • Wada H, Sato E, Uenaka A, et al. (2008). Analysis of peripheral and local anti-tumor immune response in esophageal cancer patients after NY-ESO-1 protein vaccination. Int J Cancer 123:2362–9.
  • Wang B, Chen KF, Yang RD, et al. (2014). Photoresponsive nanogels synthesized using spiropyrane- modified pullulan as potential drug carriers. J Appl Polym Sci 131:9.
  • Watanabe K, Tsuchiya Y, Kawaguchi Y, et al. (2011). The use of cationic nanogels to deliver proteins to myeloma cells and primary T lymphocytes that poorly express heparan sulfate. Biomaterials 32:5900–5.
  • Wei X, Senanayake TH, Warren G, et al. (2013). Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjug Chem 24:658–68.
  • Yahyaei M, Mehrnejad F, Naderi-manesh H, et al. (2017). Follicle-stimulating hormone encapsulation in the cholesterol-modified chitosan nanoparticles via molecular dynamics simulations and binding free energy calculations. Eur J Pharm Sci 107:126–37.
  • Yamane S, Sasaki Y, Akiyoshi K. (2008). Siloxane-crosslinked polysaccharide nanogels for potential biomedical applications. Chem Lett 37:1282–3.
  • Yim H, Park SJ, Bae YH, et al. (2013). Biodegradable cationic nanoparticles loaded with an anticancer drug for deep penetration of heterogeneous tumours. Biomaterials 34:7674–82.
  • Yokota M, Kobayashi Y, Morita J, et al. (2014). Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS One 9:12.
  • Yue XL, Zhang Q, Dai ZF. (2017). Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Adv Drug Deliver Rev 115:155–70.
  • Yuki Y, Nochi T, Kong IG, et al. (2013). Nanogel-based antigen-delivery system for nasal vaccines. Biotechnol Genet Eng Rev 29:61–72.
  • Zhang XJ, Malhotra S, Molina M, et al. (2015). Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 44:1948–73.
  • Zhu Z, Kang WL, Sarsenbekuly B, et al. (2017). Preparation and solution performance for the amphiphilic polymers with different hydrophobic groups. J Appl Polym Sci 134:9.