15,059
Views
136
CrossRef citations to date
0
Altmetric
Review Article

Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease

, , , &
Pages 307-320 | Received 15 Nov 2017, Accepted 11 Jan 2018, Published online: 19 Jan 2018

References

  • Abbott NJ, Patabendige AAK, Dolman DEM, et al. (2010). Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25.
  • Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. (2005). Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. Neurotherapeutics 2:554–71.
  • Ali T, Kim MJ, Rehman SU, et al. (2017). Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1–42 mouse model of Alzheimer’s disease. Mol Neurobiol 54:6490–506.
  • Alyautdin R, Khalin I, Nafeeza MI, et al. (2014). Nanoscale drug delivery systems and the blood–brain barrier. Int J Nanomedicine. 9:795–811.
  • Arumugam K, Subramanian GS, Mallayasamy SR, et al. (2008). A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm (Zagreb, Croatia) 58:287–97.
  • Balducci C, Mancini S. (2014). Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer's disease mouse models . J Neurosci 34:14022–31.
  • Ballabh P, Braun A, Nedergaard M. (2004). The blood–brain barrier: an overview. Neurobiol Dis 16:1–13.
  • Bardi G, Nunes A, Gherardini L, et al. (2013). Functionalized carbon nanotubes in the brain: cellular internalization and neuroinflammatory responses. PLoS One 8:e80964.
  • Barua S, Mitragotri S. (2014). Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–43.
  • Becker RE, Greig NH, Giacobini E. (2008). Why do so many drugs for Alzheimer's disease fail in development? Time for new methods and new practices?. J Alzheimer's Dis. 15:303–25.
  • Bianco A, Kostarelos K, Partidos CD, Prato M. (2005). Biomedical applications of functionalised carbon nanotubes. Chem Commun (Cambridge, England) 5:571–7.
  • Birks J. (2006). Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev 1:CD005593.
  • Birks JS, Chong LY, Grimley Evans J. (2015). Rivastigmine for Alzheimer's disease. Cochrane Database Syst Rev 4:CD001191.
  • Blair LJ, Zhang B, Dickey CA. (2013). Potential synergy between tau aggregation inhibitors and tau chaperone modulators. Alzheimers Res Ther 5:41–41.
  • Blasi P, Giovagnoli S, Schoubben A, et al. (2007). Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59:454–77.
  • Bolisetty S, Boddupalli CS, Handschin S, et al. (2014). Amyloid fibrils enhance transport of metal nanoparticles in living cells and induced cytotoxicity. Biomacromolecules 15:2793–9.
  • Bouayed J, Rammal H, Soulimani R. (2009). Oxidative stress and anxiety: relationship and cellular pathways. Oxid Med Cell Longev 2:63–67.
  • Burns A. (2003). Treatment of cognitive impairment in Alzheimer's disease. Dialogues Clin Neurosci 5:35–43.
  • Cheng KK, Yeung CF, Ho SW, et al. (2013). Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s Disease Tg2576 Mice. AAPS J 15:324–36.
  • Christen Y. (2000). Oxidative stress and Alzheimer disease. Am J Clin Nutr 71:621S–9s.
  • Ciechanover A, Kwon YT. (2015). Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147.
  • Conti E, Gregori M, Radice I, et al. (2017). Multifunctional liposomes interact with Abeta in human biological fluids: therapeutic implications for Alzheimer's disease. Neurochem Int 108:60–5.
  • Danysz W & Parsons CG. (2012). Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine – searching for the connections. Br J Pharmacol 167:324–352.
  • Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. (2015). Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer's disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104:3544–56.
  • Ensign LM, Cone R, Hanes J. (2012). Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64:557–70.
  • Farlow MR, Miller ML, Pejovic V. (2008). Treatment options in Alzheimer's disease: maximizing benefit, managing expectations. Dement Geriatr Cogn Disord 25:408–22.
  • Feng X, Chen A, Zhang Y, et al. (2015). Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine 10:4321–40.
  • Feng Y, Wang X. (2012). Antioxidant therapies for Alzheimer's disease. Oxid Med Cell Longevity 2012:472932.
  • Ferris SH, Farlow M. (2013). Language impairment in Alzheimer's disease and benefits of acetylcholinesterase inhibitors. Clin Interv Aging 8:1007–14.
  • Fong TG, Tulebaev SR, Inouye SK. (2009). Delirium in elderly adults: diagnosis, prevention and treatment. Nat Rev Neurol 5:210–20.
  • Gadhave K, Bolshette N, Ahire A, et al. (2016). The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med 20:1392–407.
  • Gao N, Sun H, Dong K, et al. (2015). Gold-nanoparticle-based multifunctional amyloid-beta inhibitor against Alzheimer's disease. Chem Eur J 21:829–35.
  • Gerenu G, Liu K, Chojnacki JE, et al. (2015). Curcumin/melatonin hybrid 5-(4-hydroxy-phenyl)-3-oxo-pentanoic acid [2-(5-methoxy-1h-indol-3-yl)-ethyl]-amide ameliorates AD-like pathology in the APP/PS1 mouse model. ACS Chem Neurosci 6:1393–9.
  • Gidwani M, Singh AV. (2014). Nanoparticle enabled drug delivery across the blood brain barrier: in vivo and in vitro models, opportunities and challenges. Curr Pharm Biotechnol 14:1201–12.
  • Glat M, Skaat H, Menkes-Caspi N, et al. (2013). Age-dependent effects of microglial inhibition in vivo on Alzheimer’s disease neuropathology using bioactive-conjugated iron oxide nanoparticles. J Nanobiotechnol 11:32.
  • Gobbi M, Re F, Canovi M, et al. (2010). Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide. Biomaterials 31:6519–29.
  • Gorlovoy P, Larionov S, Pham TT, Neumann H. (2009). Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J 23:2502–13.
  • Grossman H, Marzloff G, Luo X, et al. (2009). NIC5-15 as a treatment for Alzheimer's: safety, pharmacokinetics and clinical variables. Alzheimers Dement 5:259.
  • Grothe M, Heinsen H, Teipel S. (2013). Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer's disease. Neurobiol Aging 34:1210–20.
  • Hajieva P. (2017). The effect of polyphenols on protein degradation pathways: implications for neuroprotection. Molecules (Basel, Switzerland) 22:E159.
  • Han DH, Na H-K, Choi WH, et al. (2014). Direct cellular delivery of human proteasomes to delay tau aggregation. Nat Commun 5:5633.
  • Hansen RA, Gartlehner G, Webb AP, et al. (2008). Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interven Aging 3:211–25.
  • Jain KK. (2012). Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (London, England) 7:1225–33.
  • Jia H, Wang P, Song T. (2015). The influence of extremely low-frequency magnetic field and magnetic nanoparticle on aβ40 aggregation in vitro. IEEE Trans Magnet 51:1–5.
  • Jinwal UK, Groshev A, Zhang J, et al. (2014). Preparation and characterization of methylene blue nanoparticles for Alzheimer's disease and other tauopathies. Curr Drug Deliv 11:541–50.
  • Jogani VV, Shah PJ, Mishra P, et al. (2007). Nose-to-brain delivery of tacrine. J Pharm Pharmacol 59:1199–205.
  • Joshi S, Singh-Moon RP, Ellis JA, et al. (2015). Cerebral hypoperfusion-assisted intra-arterial deposition of liposomes in normal and glioma-bearing rats. Neurosurgery 76:92–100.
  • Joshi S, Singh-Moon RP, Wang M, et al. (2014). Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue. J Neurooncol 118:73–82.
  • Kafa H, Wang JT-W, Rubio N, et al. (2015). The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 53:437–52.
  • Karimzadeh M, Rashidi L, Ganji F. (2017). Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev Ind Pharm 43:628–36.
  • Kavirajan H, Schneider LS. (2007). Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol 6:782–92.
  • Khan J, Alexander A, Ajazuddin Saraf S, Saraf S. (2013). Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release 168:50–60.
  • Kitazawa M, Oddo S, Yamasaki TR, et al. (2005). Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci 25:8843–53.
  • Kratz F. (2008). Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–83.
  • Kumari A, Yadav SK, Yadav SC. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18.
  • Kuo Y-C, Lin C-Y, Li J-S, Lou Y-I. (2017). Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer’s disease treatment. Int J Nanomedicine 12:1757–74.
  • Kuo Y-C, Rajesh R. (2017). Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. Mater Sci Eng C 77:680–9.
  • Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. (2009). Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 17:564–74.
  • Kwon HJ, Cha M-Y, Kim D, et al. (2016). Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 10:2860–70.
  • Leonard AK, Sileno AP, Brandt GC, et al. (2007). In vitro formulation optimization of intranasal galantamine leading to enhanced bioavailability and reduced emetic response in vivo. Int J Pharm 335:138–46.
  • Liao Y-H, Chang Y-J, Yoshiike Y, et al. (2012). Negatively charged gold nanoparticles inhibit Alzheimer's amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8:3631–9.
  • Liu C-C, Kanekiyo T, Xu H, Bu G. (2013). Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–18.
  • Liu H, Dong X, Liu F, et al. (2017a). Iminodiacetic acid-conjugated nanoparticles as a bifunctional modulator against Zn2+-mediated amyloid β-protein aggregation and cytotoxicity. J Colloid Interf Sci 505:973–82.
  • Liu H, Yu L, Dong X, Sun Y. (2017b). Synergistic effects of negatively charged hydrophobic nanoparticles and (−)-epigallocatechin-3-gallate on inhibiting amyloid β-protein aggregation. J Colloid Interf Sci 491:305–12.
  • Liu Y, An S, Li J, et al. (2016). Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer's disease mice. Biomaterials 80:33–45.
  • Lohan S, Raza K, Mehta SK, et al. (2017). Anti-Alzheimer's potential of berberine using surface decorated multi-walled carbon nanotubes: a preclinical evidence. Int J Pharm 530:263–78.
  • Loureiro JA, Andrade S, Duarte A, et al. (2017). Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer's disease. Molecules (Basel, Switzerland) 22:E227.
  • Loureiro JA, Gomes B, Fricker G, et al. (2016). Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces 145:8–13.
  • Lundquist P, Artursson P. (2016). Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 106:256–76.
  • Mahmoudi M, Quinlan-Pluck F, Monopoli MP, et al. (2013). Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS Chem Neurosci 4:475–85.
  • Maynard CJ, Bush AI, Masters CL, et al. (2005). Metals and amyloid-β in Alzheimer's disease. Int J Exp Pathol 86:147–59.
  • Micheli MR, Bova R, Magini A, et al. (2012). Lipid-based nanocarriers for CNS-targeted drug delivery. Recent Pat CNS Drug Discov 7:71–86.
  • Mirsadeghi S, Shanehsazzadeh S, Atyabi F, Dinarvand R. (2016). Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater Sci Eng C 59:390–7.
  • Misra A, Ganesh S, Shahiwala A, Shah SP. (2003). Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 6:252–73.
  • Misra S, Chopra K, Sinha VR, Medhi B. (2016). Galantamine-loaded solid–lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv 23:1434–43.
  • Moreira PI, Santos MS, Oliveira CR, et al. (2008). Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets 7:3–10.
  • Mudshinge SR, Deore AB, Patil S, Bhalgat CM. (2011). Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19:129–41.
  • Mullard A. (2017). BACE inhibitor bust in Alzheimer trial. Nat Rev Drug Discov 16:155–155.
  • Munin A, Edwards-Lévy F. (2011). Encapsulation of natural polyphenolic compounds: a review. Pharmaceutics 3:793–829.
  • Mutlu NB, Degim Z, Yilmaz S, et al. (2011). New perspective for the treatment of Alzheimer diseases: liposomal rivastigmine formulations. Drug Dev Ind Pharm 37:775–89.
  • Ordóñez-Gutiérrez L, Re F, Bereczki E, et al. (2015). Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice. Nanomedicine Nanotechnol Biol Med 11:421–30.
  • Orthmann A, Fichtner I, Zeisig R. (2011). Improving the transport of chemotherapeutic drugs across the blood-brain barrier. Expert Rev Clin Pharmacol 4:477–90.
  • Pajouhesh H, Lenz GR. (2005). Medicinal chemical properties of successful central nervous system drugs. Neurotherapeutics 2:541–53.
  • Pappolla M, Bozner P, Soto C, et al. (1998). Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem 273:7185–8.
  • Pardridge WM. (2005). The blood-brain barrier: bottleneck in brain drug development. Neurotherapeutics 2:3–14.
  • Pardridge WM. (2015). Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv 12:207–22.
  • Parveen S, Sahoo SK. (2006). Nanomedicine. Clinical applications of polyethylene glycol conjugated proteins and drugs. Clin Pharmacokinet 45:965–88.
  • Pathan SA, Iqbal Z, Zaidi SM, et al. (2009). CNS drug delivery systems: novel approaches. Recent Patents Drug Deliv Formulat 3:71–89.
  • Pavan B, Dalpiaz A, Ciliberti N, et al. (2008). Progress in drug delivery to the central nervous system by the prodrug approach. Molecules (Basel, Switzerland) 13:1035–65.
  • Poduslo JF, Hultman KL, Curran GL, et al. (2011). Targeting vascular amyloid in arterioles of Alzheimer disease transgenic mice with amyloid beta protein antibody-coated nanoparticles. J Neuropathol Exp Neurol 70:653–61.
  • Polchi A, Magini A, Mazuryk J, et al. (2016). Rapamycin loaded solid lipid nanoparticles as a new tool to deliver mTOR inhibitors: formulation and in vitro characterization. Nanomaterials 6:E87.
  • Praticò D. (2008). Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29:609–615.
  • Qizilbash N, Birks J, Lopez-Arrieta J, et al. (2000). Tacrine for Alzheimer's disease. Cochrane Database Syst Rev 2:CD000202.
  • Rahal A, Kumar A, Singh V, et al. (2014). Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014:19.
  • Rassu G, Soddu E, Posadino AM, et al. (2017). Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces 152:296–301.
  • Re F, Airoldi C, Zona C, et al. (2010). Beta amyloid aggregation inhibitors: small molecules as candidate drugs for therapy of Alzheimer's disease. Curr Med Chem 17:2990–3006.
  • Re F, Gregori M, Masserini M. (2012). Nanotechnology for neurodegenerative disorders. Nanomedicine Nanotechnol Biol Med 8:S51–S8.
  • Revett TJ, Baker GB, Jhamandas J, Kar S. (2013). Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38:6–23.
  • Rip J, Chen L, Hartman R, et al. (2014). Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J Drug Target 22:460–7.
  • Rocha S. (2013). Targeted drug delivery across the blood brain barrier in Alzheimer's disease. Curr Pharm Des 19:6635–46.
  • Rochet JC. (2007). Novel therapeutic strategies for the treatment of protein-misfolding diseases. Expert Rev Mol Med 9:1–34.
  • Rodriguez-Franco MI, Fernandez-Bachiller MI, Perez C, et al. (2006). Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J Med Chem 49:459–62.
  • Roney C, Kulkarni P, Arora V, et al. (2005). Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer's disease. J Control Release 108:193–214.
  • Ruff J, Hüwel S, Kogan MJ, et al. (2017). The effects of gold nanoparticles functionalized with sz-amyloid specific peptides on an in vitro model of blood–brain barrier. Nanomedicine Nanotechnol Biol Med 13:1645–52.
  • Sainsbury F, Zeng B, Middelberg APJ. (2014). Towards designer nanoemulsions for precision delivery of therapeutics. Curr Opin Chem Eng 4:11–7.
  • Salvati A, Pitek AS, Monopoli MP, et al. (2013). Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–43.
  • Sanjeev Kumar Y, Anup Kumar S, Atul D, et al. (2017). Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line. Nanotechnology 28:365102.
  • Saraiva C, Praça C, Ferreira R, et al. (2016). Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47.
  • Serafini A. (2017). Investment Thesis for Biogen, Inc.(NASDAQ: BIIB).
  • Sharma G, Modgil A, Zhong T, et al. (2014). Influence of short-chain cell-penetrating peptides on transport of doxorubicin encapsulating receptor-targeted liposomes across brain endothelial barrier. Pharm Res 31:1194–209.
  • Sharma S, Singh A. (2011). Nanotechnology based targeted drug delivery: current status and future prospects for drug development. In: Kapetanović I, editor. Drug discovery and development-present and future. Croatia: InTech.
  • Singh NA, Mandal AKA, Khan ZA. (2016). Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 15:60.
  • Singh R, Lillard JW. (2009). Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–23.
  • Song Q, Huang M, Yao L, et al. (2014). Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano 8:2345–59.
  • Sorokina SA, Stroylova YY, Shifrina ZB, Muronetz VI. (2016). Disruption of amyloid prion protein aggregates by cationic pyridylphenylene dendrimers. Macromol Biosci 16:266–75.
  • Spuch C, Saida O, Navarro C. (2012). Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Patents Drug Deliv Formulat 6:2–18.
  • Srinageshwar B, Peruzzaro S, Andrews M, et al. (2017). PAMAM dendrimers cross the blood–brain barrier when administered through the carotid artery in C57BL/6J mice. Int J Mol Sci 18:628.
  • Stefansson S, Knight M, Ahn SN. (2012). Specific binding of Alzheimer's Aβ peptide fibrils to single-walled carbon nanotubes. Nanomater Nanotechnol 2:11.
  • Stegemann S, Leveiller F, Franchi D, et al. (2007). When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci 31:249–61.
  • Teller S, Tahirbegi IB, Mir M, et al. (2015). Magnetite-Amyloid-β deteriorates activity and functional organization in an in vitro model for Alzheimer’s disease. Sci Rep 5:17261.
  • Thomas TP, Majoros I, Kotlyar A, et al. (2009). Cationic poly(amidoamine) dendrimer induces lysosomal apoptotic pathway at therapeutically relevant concentrations. Biomacromolecules 10:3207–14.
  • Vidal F, Guzman L. (2015). Dendrimer nanocarriers drug action: perspective for neuronal pharmacology. Neural Regen Res 10:1029–31.
  • Wagstaff AJ, McTavish D. (1994). Tacrine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in Alzheimer's disease. Drugs Aging 4:510–40.
  • Wang ZH, Wang ZY, Sun CS, et al. (2010). Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials 31:908–15.
  • Wolburg H, Lippoldt A. (2002). Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc Pharmacol 38:323–37.
  • Wong HL, Wu XY, Bendayan R. (2012). Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64:686–700.
  • Wortmann M. (2013). Importance of national plans for Alzheimer's disease and dementia. Alzheimers Res Ther 5:40
  • Wu W-h, Sun X, Yu Y-p, et al. (2008). TiO2 nanoparticles promote β-amyloid fibrillation in vitro. Biochem Biophys Res Commun 373:315–8.
  • Xie B, Zhang H, Li X, et al. (2017). Iminodiacetic acid-modified human serum albumin: a multifunctional agent against metal-associated amyloid β-protein aggregation and cytotoxicity. ACS Chem Neurosci 8:2214–24.
  • Xie L, Lin D, Luo Y, et al. (2014). Effects of hydroxylated carbon nanotubes on the aggregation of Aβ16–22 Peptides: a combined simulation and experimental study. Biophys J 107:1930–8.
  • Yang L, Yin T, Liu Y, et al. (2016). Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater 46:177–90.
  • Yang Z, Zhang Y, Yang Y, et al. (2010). Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine Nanotechnol Biol Med 6:427–41.
  • Yin T, Yang L, Liu Y, et al. (2015). Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater 25:172–83.
  • Zaman M, Ahmad E, Qadeer A, et al. (2014). Nanoparticles in relation to peptide and protein aggregation. Int J Nanomedicine 9:899–912.
  • Zanganeh S, Spitler R, Erfanzadeh M, et al. (2016). Protein corona: opportunities and challenges. Int J Biochem Cell Biol 75:143–7.
  • Zhang Y, Walker JB, Minic Z, et al. (2016). Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier. Sci Rep 6:25794.
  • Zhang Y, Xu Y, Xi X, et al. (2017). Amino acid-modified chitosan nanoparticles for Cu2+ chelation to suppress CuO nanoparticle cytotoxicity. J Mater Chem B 5:3521–30.